Где находится ребро у пирамиды. Пирамида и ее элементы. Пирамида как геометрическое тело

Решая задачу C2 методом координат, многие ученики сталкиваются с одной и той же проблемой. Они не могут рассчитать координаты точек , входящих в формулу скалярного произведения. Наибольшие трудности вызывают пирамиды . И если точки основания считаются более-менее нормально, то вершины - настоящий ад.

Сегодня мы займемся правильной четырехугольной пирамидой. Есть еще треугольная пирамида (она же - тетраэдр ). Это более сложная конструкция, поэтому ей будет посвящен отдельный урок.

Для начала вспомним определение:

Правильная пирамида - это такая пирамида, у которой:

  1. В основании лежит правильный многоугольник: треугольник, квадрат и т.д.;
  2. Высота, проведенная к основанию, проходит через его центр.

В частности, основанием четырехугольной пирамиды является квадрат . Прямо как у Хеопса, только чуть поменьше.

Ниже приведены расчеты для пирамиды, у которой все ребра равны 1. Если в вашей задаче это не так, выкладки не меняются - просто числа будут другими.

Вершины четырехугольной пирамиды

Итак, пусть дана правильная четырехугольная пирамида SABCD , где S - вершина, основание ABCD - квадрат. Все ребра равны 1. Требуется ввести систему координат и найти координаты всех точек. Имеем:

Вводим систему координат с началом в точке A :

  1. Ось OX направлена параллельно ребру AB ;
  2. Ось OY - параллельно AD . Поскольку ABCD - квадрат, AB ⊥ AD ;
  3. Наконец, ось OZ направим вверх, перпендикулярно плоскости ABCD .

Теперь считаем координаты. Дополнительное построение: SH - высота, проведенная к основанию. Для удобства вынесем основание пирамиды на отдельный рисунок. Поскольку точки A , B , C и D лежат в плоскости OXY , их координата z = 0. Имеем:

  1. A = (0; 0; 0) - совпадает с началом координат;
  2. B = (1; 0; 0) - шаг на 1 по оси OX от начала координат;
  3. C = (1; 1; 0) - шаг на 1 по оси OX и на 1 по оси OY ;
  4. D = (0; 1; 0) - шаг только по оси OY .
  5. H = (0,5; 0,5; 0) - центр квадрата, середина отрезка AC .

Осталось найти координаты точки S . Заметим, что координаты x и y точек S и H совпадают, поскольку они лежат на прямой, параллельной оси OZ . Осталось найти координату z для точки S .

Рассмотрим треугольники ASH и ABH :

  1. AS = AB = 1 по условию;
  2. Угол AHS = AHB = 90°, поскольку SH - высота, а AH ⊥ HB как диагонали квадрата;
  3. Сторона AH - общая.

Следовательно, прямоугольные треугольники ASH и ABH равны по одному катету и гипотенузе. Значит, SH = BH = 0,5 · BD . Но BD - диагональ квадрата со стороной 1. Поэтому имеем:

Итого координаты точки S :

В заключение, выпишем координаты всех вершин правильной прямоугольной пирамиды:


Что делать, когда ребра разные

А что, если боковые ребра пирамиды не равны ребрам основания? В этом случае рассмотрим треугольник AHS :


Треугольник AHS - прямоугольный , причем гипотенуза AS - это одновременно и боковое ребро исходной пирамиды SABCD . Катет AH легко считается: AH = 0,5 · AC . Оставшийся катет SH найдем по теореме Пифагора . Это и будет координата z для точки S .

Задача. Дана правильная четырехугольная пирамида SABCD , в основании которой лежит квадрат со стороной 1. Боковое ребро BS = 3. Найдите координаты точки S .

Координаты x и y этой точки мы уже знаем: x = y = 0,5. Это следует из двух фактов:

  1. Проекция точки S на плоскость OXY - это точка H ;
  2. Одновременно точка H - центр квадрата ABCD , все стороны которого равны 1.

Осталось найти координату точки S . Рассмотрим треугольник AHS . Он прямоугольный, причем гипотенуза AS = BS = 3, катет AH - половина диагонали. Для дальнейших вычислений нам потребуется его длина:

Теорема Пифагора для треугольника AHS : AH 2 + SH 2 = AS 2 . Имеем:

Итак, координаты точки S :

Понятие пирамиды

Определение 1

Геометрическая фигура, образованная многоугольником и точкой, не лежащей в плоскости, содержащей этот многоугольник, соединенной со всеми вершинами многоугольника называется пирамидой (рис. 1).

Многоугольник, из которого составлена пирамида, называется основанием пирамиды, получаемые при соединение с точкой треугольники - боковыми гранями пирамиды, стороны треугольников -- сторонами пирамиды, а общая для всех треугольников точка-- вершиной пирамиды.

Виды пирамид

В зависимости от количества углов в основании пирамиды ее можно назвать треугольной, четырехугольной и так далее (рис. 2).

Рисунок 2.

Еще один вид пирамид -- правильная пирамида.

Введем и докажем свойство правильной пирамиды.

Теорема 1

Все боковые грани правильной пирамиды являются равнобедренными треугольниками, которые равны между собой.

Доказательство.

Рассмотрим правильную $n-$угольную пирамиду с вершиной $S$ высотой $h=SO$. Опишем вокруг основания окружность (рис. 4).

Рисунок 4.

Рассмотрим треугольник $SOA$. По теореме Пифагора, получим

Очевидно, что так будет определяться любое боковое ребро. Следовательно, все боковые ребра равны между собой, то есть все боковые грани -- равнобедренные треугольники. Докажем, что они равны между собой. Так как основание -- правильный многоугольник, то основания всех боковых граней равны между собой. Следовательно, все боковые грани равны по III признаку равенства треугольников.

Теорема доказана.

Введем теперь следующее определение, связанное с понятием правильной пирамиды.

Определение 3

Апофемой правильной пирамиды называется высота её боковой грани.

Очевидно, что по теореме один все апофемы равны между собой.

Теорема 2

Площадь боковой поверхности правильной пирамиды определяется как произведение полупериметра основания на апофему.

Доказательство.

Обозначим сторону основания $n-$угольной пирамиды через $a$, а апофему через $d$. Следовательно, площадь боковой грани равна

Так как, по теореме 1, все боковые стороны равны, то

Теорема доказана.

Еще один вид пирамиды -- усеченная пирамида.

Определение 4

Если через обычную пирамиду провести плоскость, параллельную её основанию, то фигура, образованная между этой плоскостью и плоскостью основания называется усеченной пирамидой (рис. 5).

Рисунок 5. Усеченная пирамида

Боковыми гранями усеченной пирамиды являются трапеции.

Теорема 3

Площадь боковой поверхности правильной усеченной пирамиды определяется как произведение суммы полупериметров оснований на апофему.

Доказательство.

Обозначим стороны оснований $n-$угольной пирамиды через $a\ и\ b$ соответственно, а апофему через $d$. Следовательно, площадь боковой грани равна

Так как все боковые стороны равны, то

Теорема доказана.

Пример задачи

Пример 1

Найти площадь боковой поверхности усеченной треугольной пирамиды, если она получена из правильной пирамиды со стороной основания 4 и апофемой 5 путем отсечения плоскостью, проходящей через среднюю линию боковых граней.

Решение.

По теореме о средней линии получим, что верхнее основание усеченной пирамиды равно $4\cdot \frac{1}{2}=2$, а апофема равна $5\cdot \frac{1}{2}=2,5$.

Тогда, по теореме 3, получим

Нам хорошо известны великие египетские пирамиды, каждый может представить себе, как они выглядят. Это представление и поможет нам разобраться в особенностях такой геометрической фигуры, как пирамида.

Пирамида – это многогранник, состоящий из плоского многоугольника – основания пирамиды, точки, не лежащей в плоскости основания, – вершины пирамиды и всех отрезков, соединяющих вершину с точками основания. Отрезки, которые соединяют вершину пирамиды с вершинами основания, называются боковыми рёбрами. На рис. 1 изображена пирамида SABCD. Четырёхугольник ABCD – основание пирамиды, точка S – вершина пирамиды, отрезки SA, SB, SC и SD – рёбра пирамиды.

Высота пирамиды – перпендикуляр, опущенный из вершины пирамиды на плоскость основания. На рис. 1 SO – высота пирамиды.

Пирамида называется n-угольной, если её основанием является n-угольник. На рисунке 1 изображена четырёхугольная пирамида. Треугольная пирамида называется тетраэдром.

Пирамида называется правильной, если её основанием является правильный многоугольник, а основание высоты совпадает с центром этого многоугольника. Боковые рёбра у правильной пирамиды равны, а, следовательно, боковые грани являются равнобедренными треугольниками. В правильной пирамиде высота боковой грани, проведённая из вершины пирамиды, называется апофемой.

Пирамида обладает рядом свойств.

Все диагонали пирамиды принадлежат её граням.

Если все боковые ребра равны, то:

  • около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр;
  • боковые ребра образуют с плоскостью основания равные углы, и, наоборот, если боковые ребра образуют с плоскостью основания равные углы или если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые ребра пирамиды равны.

Если боковые грани наклонены к плоскости основания под одним углом, то:

  • в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр;
  • высоты боковых граней равны;
  • площадь боковой поверхности равна половине произведения периметра основания на высоту боковой грани.

Рассмотрим формулы для нахождения объёма, площади поверхности пирамиды.

Объём пирамиды можно вычислить по следующей формуле:

где S – площадь основания, а h – высота.

Чтобы найти площадь полной поверхности пирамиды, необходимо воспользоваться формулой:

S p = S b + S o ,

где S p – площадь полной поверхности, S b – площадь боковой поверхности, S o – площадь основания.

Усечённой пирамида – это многогранник, заключённый между основанием пирамиды и секущей плоскостью, параллельной её основанию. Грани усечённой пирамиды, лежащие в параллельных плоскостях, называются основаниями усечённой пирамиды, остальные грани называются боковыми гранями. Основаниями усечённой пирамиды являются подобные многоугольники, боковыми гранями – трапеции. Усечённая пирамида, которая получается из правильной пирамиды, называется правильной усечённой пирамидой. Боковые грани правильной усечённой трапеции представляют собой равные равнобокие трапеции, их высоты называются апофемами.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Пирамида — это многогранник , у которого одна грань — основание пирамиды — произвольный многоугольник, а остальные — боковые грани — треугольники с общей вершиной, называемой вершиной пирамиды. Перпендикуляр опущенный из вершины пирамиды на ее основание, называется высотой пирамиды . Пирамида называется треугольной, четырехугольной, и т.д., если основанием пирамиды является треугольник, четырехугольник и т.д. Треугольная пирамида есть четырехгранник — тетраэдр. Четырехугольная — пятигранник и т.д.

Пирамида , Усеченная Пирамида

Правильная пирамида

Если основание пирамиды — правильный многоугольник , а высота опускается в центр основания, то — пирамида правильная. В правильной пирамиде все боковые ребра равны, все боковые грани равные равнобедренные треугольники. Высота треугольника боковой грани правильной пирамиды называется — апофема правильной пирамиды .

Усеченная пирамида

Сечение параллельное основанию пирамиды делит пирамиду на две части. Часть пирамиды между ее основанием и этим сечением — это усеченная пирамида . Это сечение для усеченной пирамиды является одним из её оснований. Расстояние между основаниями усеченной пирамиды называется высотой усеченной пирамиды. Усеченная пирамида называется правильной, если пирамида, из которой она была получена, была правильной. Все боковые грани правильной усеченной пирамиды — это равные равнобокие трапеции. Высота трапеции боковой грани правильной усеченной пирамиды называется — апофема правильной усеченной пирамиды .

Рассмотрим, какими свойствами обладают пирамиды, в которых боковые грани перпендикулярны основанию.

Если две смежные боковые грани пирамиды перпендикулярны основанию , то общее боковое ребро этих граней является высотой пирамиды . Если в задаче сказано, что ребро пирамиды является ее высотой , то речь идет именно об этом виде пирамид.

Грани пирамиды, перпендикулярные основанию — прямоугольные треугольники.

Если основание пирамиды — треугольник

Боковую поверхность такой пирамиды в общем случае ищем как сумму площадей всех боковых граней.

Основание пирамиды является ортогональной проекцией грани, не перпендикулярной основанию (в данном случае, SBC). А значит, по теореме о площади ортогональной проекции, площадь основания равна произведению площади этой грани на косинус угла между нею и плоскостью основания.

Если основание пирамиды — прямоугольный треугольник

В этом случае все грани пирамиды — прямоугольные треугольники .

Треугольники SAB и SAС прямоугольные, так как SA — высота пирамиды. Треугольник ABC прямоугольный по условию.

То, что треугольник SBC прямоугольный, следует из теоремы о трех перпендикулярах (AB — проекция наклонной SB на плоскость основания. Так как AB перпендикулярна BC по условию, то и SB перпендикулярна BC).

Угол между боковой гранью SBC и основанием в этом случае — угол ABS.

Площадь боковой поверхности равна сумме площадей прямоугольных треугольников:

Так как в данном случае

Если основание пирамиды — равнобедренный треугольник

В этом случае угол между плоскостью боковой грани BCS и плоскостью основания — это угол AFS, где AF — высота, медиана и биссектриса равнобедренного треугольника ABC.

Аналогично — если в основании пирамиды лежит равносторонний треугольник ABC.

Если основание пирамиды — параллелограмм

В этом случае основание пирамиды является ортогональной проекцией боковых граней, не перпендикулярных основанию.

Если разбить основание на два треугольника, то

где α и β — соответственно углы между плоскостями ADS и CDS и плоскостью основания.

Если BF и BK — высоты параллелограмма, то угол BFS — это угол наклона боковой грани CDS к плоскости основания, а угол BKS — угол наклона грани ADS.

(чертеж сделан для случая, когда B — тупой угол).

Если в основании пирамиды лежит ромб ABCD, то углы BFS и BKS равны. Треугольники ABS и CBS, а также ADS и CDS в этом случае также равны.

Если основание пирамиды — прямоугольник

В этом случае угол между плоскостью боковой грани SAD и плоскостью основания есть угол SAB,

а угол между плоскостью боковой грани SCD и плоскостью основания — угол SCB

(по теореме о трех перпендикулярах).