Физико-химические методы анализа органических соединений. Органических веществ анализ Качественное и количественное определение органических соединений

ОРГАНИЧЕСКИХ ВЕЩЕСТВ АНАЛИЗ

(устар.-орг. анализ), качеств. и количеств. определение состава орг. в-в и установление их строения.

При определении качеств. состава орг. в-в используют разнообразные методы, основанные на хим. р-циях, сопровождающихся образованием продуктов с характерными св-вами (цвет, запах, т-ра плавления и др.), и на измерении физ. и физ.-хим. (хроматографич., спектральных и др.) характеристик идентифицируемых соединений.

При количеств, анализе орг. в-в устанавливают кол-во реагента, вступившего в р-цию с определяемыми орг. соед., или измеряют разл. физ. и физ.-хим. характеристики, связанные с кол-вом определяемого соединения.

О. в. а. включает элементный анализ, структурно-групповой (включая функц. и стереоспецифич.), молекулярный анализ, фазовый анализ и структурный анализ.

Исторически первыми были разработаны способы элементного анализа орг. в-в (А. Лавуазье, кон. 18 в.), основанные на их окислении и гравиметрич., титриметрич. или газометрич. определении образовавшихся простых соед. отдельных элементов. Первые методы элементного микрохимического анализа (микроанализа) разработал Ф. Прегль в нач. 20 в. Со 2-й пол. 20 в. для элементного анализа в-в широко применяют автоматич. анализаторы, основанные на сожжении анализируемой пробы орг. в-ва и газохромато-графич. разделении и определении продуктов сожжения. Анализатор снабжают компьютером и автоматич. системой ввода проб.

Изотопный анализ орг. в-в имеет целью определение в них содержания отдельных изотопов, а также определение соотношения одних и тех же орг. соед., содержащих разные или их сочетания. Для этого чаще всего применяют масс-спектрометрию или многократную газо-жидкостную хроматографию (напр., при разделении обычных и дейте-рир. форм метана или бензола). Наиб. эффективна хромато-масс-спектрометрия.

Большинство методов функционального анализа основано на взаимод. отдельных функц. групп орг. соед. с подходящими реагентами. Такие р-ции бывают избирательными или ограниченно избирательными, т. е. характерны соотв. только для одной или неск. функц. групп.

Чаще всего используют р-ции, связанные с образованием или исчезновением к-т, оснований, окислителей, восстановителей, воды, газов, реже-осадков и окрашенных в-в. Образовавшиеся к-ты и основания определяют кислотно-основным титрованием в водной или неводной среде. В неводной среде возможно раздельное потенциометрич. титрование к-ты и основания разной силы при совместном присутствии.

В случае окислит.-восстановит. р-ций, скорость к-рых невелика, обычно используют обратное титрование, т. е. оттитровывают избыток реагента. На образовании или поглощении воды в р-циях орг. соед. основано определение мн. функц. групп с помощью Фишера реактива (см. также Акваметрия).

Методы, основанные на р-циях, к-рые сопровождаются выделением или поглощением газа, используют редко, т. к. измерение объема или давления обычно требует громоздкой аппаратуры.

На образовании осадков основаны гравиметрич. методы определения небольшого числа функц. групп. Малорастворимые соед., используемые в этих случаях, представляют собой, как правило, металлич. карбоновых и сульфоно-вых к-т, соли орг. оснований, комплексные соед. (в т. ч. хелатные).

Образование окрашенных соед. часто достаточно специфично и позволяет избирательно определять функц. группы фотометрич. методами. Получили распространение (особенно в микроанализе) р-ции, приводящие к образованию флуоресцирующих соед., т. к. чувствительность определения функц. группы в этом случае достаточно велика.

Особой разновидностью функцион. анализа считают методы, основанные на предварит. взаимодействии определяемого в-ва с реагентами и определении образовавшегося продукта. Напр., ароматич. после нитрования можно определять полярографически, а р-ция между аминогруппой и нафталинсульфохлоридом позволяет определять флуориметрически.

Ниже приведены примеры наиб. часто применяемых методов функцион. анализа.

Определение активного водорода в спиртах, аминах, амидах, карбоновых и сульфоновых к-тах, меркаптанах и суль-фонамидах основано на их взаимод. с реактивами Гриньяра (обычно с метилмагнийиодидом; см. Церевитинова метод )или с LiAlH 4 и измерении объема выделившегося метана или водорода соответственно. Активный в ацетилене и его гомологах определяют по р-ции с солями Ag(I), Hg(I) или Cu(I) с послед, титриметрич. определением выделившихся к-т.

Соединения с ненасыщ. углерод-углеродными связями чаще всего бромируют, иодируют или гидрируют. В первых двух случаях непрореагировавший Вг 2 или I 2 определяют иодометрически, а при гидрировании измеряют объем поглощенного Н 2 . Число двойных связей можно установить по р-ции присоединения солей ртути с послед. титрованием выделившейся к-ты.

При определении гидроксильных групп чаще всего применяют с помощью уксусного, фталевого или пиромеллитового ангидрида, избыток к-рого оттитровывают. Можно использовать хлорангидриды к-т. Гидрокси-группы в фенолах обычно титруют р-рами основании в неводной среде. Фенолы легко бромируются и сочетаются с солями диазония, поэтому оттитровывают р-рами Вг 2 или солей диазония либо приливают к исследуемому р-ру бромид-броматную смесь, избыток к-рой устанавливают иодометрически (см. также Фалина реакция).

Углеводы можно определять окислением периодатом натрия и послед. титрованием избытка окислителя или образующихся к-т. Разработаны многочисл. разновидности этого метода (см., напр., Малапрада реакция).

Для определения орг. пероксисоединений (в т. ч. перокси-кислот) чаще всего используют их взаимод. с KI и послед. титрование выделившегося I 2 р-ром Na 2 S 2 O 3 .

Анализ алкоксисоединений заключается во взаимод. анализируемого в-ва с иодистоводородной к-той с образованием алкилиодидов (см. Цейзеля метод). Последние определяют разными методами - гравиметрически (в виде AgI) или титриметрически ( , кислотно-основное титрование). Аналогично можно определять и карбоновых к-т. Для идентификации С 1 -С 4 -алкоксигрупп образующиеся алкилиодиды превращают в четвертичные аммониевые соед., к-рые анализируют методами тонкослойной или бумажной хроматографии.

Определение эпоксигрупп основано на их р-ции с хлористым водородом с образованием хлоргидринов; по завершении р-ции избыток НСl оттитровывают р-ром щелочи.

Для определения карбонильных соед. (альдегидов и кето-нов) наиб. часто применяют оксимирование, т. е. их превращение в при взаимод. с гидрохлоридом гидроксил-амина; выделившийся в результате р-ции НСl оттитровывают р-ром щелочи (конечную точку титрования устанавливают с помощью индикатора или потенциометрически). Существует большое число модификаций этого метода. Альдегиды можно определять также по р-ции с бисульфитом Na с послед. кислотно-основным титрованием. Реже используют альдегидов ионами Ag + , р-цию с гидразинами и образование оснований Шиффа.

Хиноны восстанавливают хлоридом Ti(III) или сульфатом V(II); избыток восстановителя определяют титриметрически. Хиноны можно определять также иодометрически.

Для определения карбоновых к-т и их солей наиб. часто применяют кислотно-основное титрование в неводных средах.

Для анализа производных карбоновых к-т разработано большое число методов. Ангидриды после их гидролиза до к-т титруют р-рами щелочей. В случае анализа смеси к-ты и ее ангидрида кислотно-основным титрованием определяют сумму обоих в-в, а затем проводят р-цию ангидрида с морфолином или анилином и оттитровывают выделившиеся к-ты. В последнем случае можно также определять избыток основания титрованием р-ром НСl. Аналогично определяют галогенангидриды или их смеси с к-тами. При этом вместо р-ции с аминами часто используют взаимод. галогенангидрида со спиртом с послед. раздельным титрованием своб. карбоновой к-ты и выделившейся галогеново-дородной к-ты р-ром щелочи.

Определение сложных эфиров карбоновых к-т основано на их гидролизе р-ром щелочи, избыток к-рой оттитровывают р-ром к-ты. Малые кол-ва сложных эфиров обычно определяют спектрофотометрически в виде Fе(Ш)-солей гидрокса-мовых к-т, образующихся при взаимод. сложных эфиров с гидроксиламином.

Для определения азотсодержащих орг. в-в предложено большое число методов. Соед., способные восстанавливаться (нитро-, нитрозо-, ), определяют титано- или ванадатометрически: добавляют избыток р-ра соли Ti(III) или V(II) и непрореагировавший восстановитель от-титровывают р-ром соли Fe(III).

Широкое применение при определении находит титрование р-рами к-т (обычно НСlО 4) в неводной среде. Этот метод часто позволяет раздельно определять орг. и неорг. основания в смесях, а также орг. основания разной силы при совместном присутствии. Амины можно определять, как и гидроксипроизводные, по р-ции их ацилирова-ния. Для определения первичных ароматич. аминов часто используют титрование р-ром в кислой среде, сопровождающееся образованием диазосоединения. Аналогичное титрование вторичных аминов приводит к их N-нитрозирова-нию и также применяется в анализе. При микроанализе первичных ароматич. аминов образовавшиеся диазосоединения обычно подвергают сочетанию с соответствующими азосоставляющими и определяют образовавшийся краситель спектрофотометрически. В случае анализа смесей первичных, вторичных и третичных аминов чаще всего применяют титрование р-ром НСlO 4 в неводной среде исходной смеси (титруются все амины), смеси после ацетилирования уксусным ангидридом (титруются только третичные амины) и смеси после обработки ацетилацетоном или салициловым альдегидом (титруется сумма вторичных и третичных аминов).

Для определения солей арилдиазония р-ром анализируе-мого в-ва титруют навески азосоставляющей (З-метил-1-фенил-5-пиразолона, м-фенилендиамина и др.) или прибавляют к анализируемому р-ру р-р азосоставляющей, избыток к-рой оттитровывают р-ром NaNO 2 в кислой среде. В случае анализа диазосоединений возможно также применение газометрич. анализа, основанного на разложении исследуемого соед. с выделением N 2 , объем к-рого измеряют. Иногда, как и в случае анализа аминов, диазосоединения определяют по р-ции сочетания с послед. спектрофотомет-рич. определением образовавшегося красителя.

Гидразины и обычно оттитровывают иодометри-чески. В случае тиолов можно использовать также взаимод. их с солями серебра или кислотно-основное титрование. Орг. сульфиды окисляют бромид-броматной смесью, избыток к-рой определяют титриметрически.

Широкое распространение для качеств. и количеств. функ-цион. анализа получили также избирательные и достаточно чувствительные методы ИК спектроскопии и ЯМР.

Возникновение стереоспецифического анализа орг. в-в во 2-й пол. 20 в. связано с развитием хроматографич. методов. Для разделения энантиомеров чаще всего предварительно проводят р-цию между анализируемыми в-вами и оптически активными реагентами с образованием диасте-реомеров, к-рые затем разделяют методами газо-жидкост-ной или высокоэффективной жидкостной хроматографии на колонках с оптически активными неподвижными фазами.

Молекулярный анализ орг. в-в основан гл. обр. на применении хроматографии и разл. спектральных методов, к-рые позволяют устанавливать строение орг. соединений.

Фазовый анализ, позволяющий качественно и количественно анализировать кристаллич. формы орг. соед., проводят с помощью рентгенографии и электронографии. Рентгеновский, структурный анализ позволяет устанавливать с высокой точностью структурную ф-лу орг. в-ва, определить длины связей между атомами и углы между связями.

Перечисленные выше методы анализа основаны на прямом определении анализируемых в-в или полученных из них производных. В О. в. а. часто применяют также косвенные методы. Так, напр., карбоновые к-ты можно выделить из анализируемой смеси в виде труднорастворимых серебряных или др. солей и затем методом атомно-абсорбц. спектроскопии или рентгено-флуоресцентного анализа определить кол-во соответствующего металла; по результатам такого анализа можно рассчитать содержание карбоновой к-ты. В жидкостной хроматографии эффективно использование косвенного детектирования разделяемых в-в, при к-ром к подвижной фазе прибавляют активный компонент, образующий с продуктами разделения или с хроматографируе-мыми в-вами легко детектируемые соединения.

Приемы анализа и используемая аппаратура зависят от конкретной задачи О. в. а.: определение основного в-ва смеси, орг. или неорг. примеси в орг. в-вах, орг. примеси в неорг. в-ве или анализ сложной многокомпонентной смеси в-в.

Методы О. в. а. широко используют при разработке технологии пром. произ-ва орг. продуктов и в процессе самого произ-ва для разработки методик анализа сырья, вспомогат. в-в, промежут. продуктов на разных стадиях произ-ва, для контроля производств. процесса, готовой продукции, сточных вод и газовых выбросов, для идентификации примесей в промежуточных и конечных продуктах, а также для разработки аналит. методик, обеспечивающих проведение необходимых кинетич. исследований. Во всех случаях необходимо выбирать оптим. варианты методов анализа и их сочетания в соответствии с требованиями к экспрессности, воспроизводимости, точности и т. п.

При разработке аналит. части нормативно-техн. документации на сырье, вспомогат. материалы и готовую продукцию прежде всего устанавливают минимально необходимое и достаточное число аналит. показателей. К таким показателям относят т-ру плавления, р-римость, содержание осн. в-ва в продукте, к-рое определяют прямым методом (обычно титриметрически с применением потенциометрии) или косвенно, вычитая из массы всего продукта массу примесей, определяемых хроматографич. (чаще всего), электрохим. или спектрофотометрич. методами. При использовании функцион. анализа для определения осн. в-ва обычно выбирают методику, предусматривающую определение этого в-ва по функц. группе, образовавшейся на последней стадии его получения. При необходимости, когда анализируемое в-во получают многостадийным синтезом, его определяют по разным функц. группам. Аналит. методы, выбираемые для анализа сырья и готовой продукции, обязательно должны обладать гл. обр. хорошей воспроизводимостью и точностью.

Методы анализа, применяемые в контроле произ-ва, должны быть экспрессными и непрерывными (напр., редокс-метрия, рН-метрия, ). В основе методик контроля процессов произ-ва орг. в-в часто лежит определение исчезающей функц. группы, т. е. группы, подвергающейся превращению на данной стадии произ-ва, что позволяет точно фиксировать конец соответствующей стадии. При этом широко используют тонкослойную, газо-жид-костную, высокоэффективную жидкостную хроматографию, спектрофотометрию, электрохим. методы, проточно-ин-жекц. анализ.

Для анализа промежут. продуктов произ-ва чаще всего применяют титриметрию, а для анализа реакц. смесей-комплекс хроматографич. и спектральных методов, в т. ч. хромато-масс-спектрометрию, сочетание газовой хроматографии с ИК фурье-спектроскопией.

Большое значение приобрел анализ объектов окружающей среды. При разработке соответствующих методик анализа осн. требования к ним заключаются в высокой чувствительности и правильности идентификации определяемых в-в. Этим требованиям удовлетворяют хромато-масс-спектрометрия с использованием двух и более неподвижных фаз.

В клинич. анализе (анализ крови, мочи, тканей и др. объектов на содержание лек. в-в, метаболитов, стероидов, аминокислот и т. п.) важным является не только чувствительность, точность и экспрессность анализа, но и воспроизводимость его результатов. Когда последнее требование имеет решающее значение, применяют хромато-масс-спектрометрию в стандартных условиях, а также высокопроизводительный проточно-инжекц. анализ и разнообразные ферментные методы, обладающие высокой селективностью.

Лит.: Губен Вейль, Методы органической химии, т. 2, Методы анализа, пер. с нем. 4 изд., М.. 1963; Черонис Н. Д., Ма Т. С., Микро- и полумикро-методы органического функционального анализа, пер. с англ., М., 1973; Сиггиа С.. Ханна Дж. Г., Количественный органический анализ по функциональным группам, пер. с англ., М. ; 1983. Б. Я. Колоколов.


Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "ОРГАНИЧЕСКИХ ВЕЩЕСТВ АНАЛИЗ" в других словарях:

    Анализ воды метод исследования свойств и качеств воды. Применяется для определения количества различных веществ в составе воды, находящейся в контакте с человеком в промышленных и бытовых целях, либо в научных. Содержание 1 Типы воды для… … Википедия

    Анализ почвы совокупность операций, выполняемых с целью определения состава, физико механических, физико химических, химических, агрохимических и биологических свойств почвы. Проводят механический (гранулометрический), химический,… … Википедия

    АНАЛИЗ ВОДЫ - производится с целью выяснения качества воды и определения возможности использования ее для снабжения рыбоводных прудов. А. в. проводится четыре раза в год: весной (в период весеннего половодья), в середине лета (июль), осенью (в период осеннего… … Прудовое рыбоводство

    анализ - АНАЛИЗ (от греч. analysis разложение, расчленение) процедура реального или мысленного расчленения предмета, явления или процесса, а также их взаимоотношений на составные части, элементы, свойства, функции и подсистемы. Процедурой,… … Энциклопедия эпистемологии и философии науки

    Идентификация (обнаружение) компонентов анализируемых в в и приблизительная количеств, оценка их содержания в в вах и материалах. В качестве компонентов м. б. атомы и ионы, изотопы элементов и отдельные нуклиды, молекулы, функц. группы и радикалы … Химическая энциклопедия

    Определение содержания (массы, концентрации и т. п.) или количеств. соотношений компонентов в анализируемом образце. Определяемыми компонентами м. б. атомы, молекулы, изотопы, функц. группы, фазы и т. п. (см. Элементный анализ, Молекулярный… … Химическая энциклопедия

Исследование органического вещества начинается с его выделения и очистки.

1. Осаждение

Осаждение – выделение одного из соединений газовой или жидкой смеси веществ в осадок, кристаллический или аморфный. Метод основан на изменении условий сольватации.Сильно понизить влияние сольватации и выделить твердое вещество в чистом виде можно несколькими методами.

Один из них состоит в том, что конечный (часто говорят – целевой) продукт переводится в солеобразное соединение (простую или комплексную соль), если только он способен к кислотно-основному взаимодействию или же комплексообразованию. Так, например, амины могут быть переведены в замещенные соли аммония:

(CH 3) 2 NH + HCl -> [(CH 3) 2 NH 2 ] + Cl – ,

а карбоновые, сульфоновые, фосфоновые и другие кислоты – в соли действием соответствующих щелочей:

CH 3 COOH + NaOH -> CH 3 COO – Na + + H 2 O;

2CH 3 SO 2 OH + Ba(OH) 2 -> Ba 2+ (CH 3 SO 2 O) 2 – + H 2 O;

CH 3 P(OH) 2 O + 2AgOH -> Ag(CH 3 PO 3) 2– + 2H 2 O.

Соли как ионные соединения растворяются только в полярных растворителях (H 2 O, ROH, RCOOH и т.д.).Чем лучше такие растворители вступают в донорно-акцепторные взаимодействия с катионами и анионами соли, тем больше энергия, выделяющаяся при сольватации, и выше растворимость. В неполярных растворителях, таких, как углеводороды, петролейный эфир (легкий бензин), CHCl 3 , CCl 4 и т.п., соли не растворяются и кристаллизуются (высаливаются) при добавлении этих или подобных растворителей в раствор солеобразных соединений. Из солей соответствующие основания или кислоты могут быть легко выделены в чистом виде.

Альдегиды и кетоны неароматической природы, присоединяя гидросульфит натрия, кристаллизуются из водных растворов в виде малорастворимых соединений.

Например, ацетон (CH 3) 2 CO из водных растворов кристаллизуется гидросульфитом натрия NaHSO 3 в виде малорастворимого гидросульфитного производного:

Альдегиды легко конденсируются с гидроксиламином с выделением молекулы воды:

Образующиеся при этом продукты называют оксимами .Они представляют собой жидкости или твердые вещества.Оксимы имеют слабокислотный характер, проявляющийся в том, что водород гидроксильной группы может замещаться металлом, и в то же время – слабоосновный характер, т.к.оксимы соединяются с кислотами, образуя соли типа солей аммония.

При кипячении с разбавленными кислотами происходит гидролиз, при этом освобождается альдегид и образуется соль гидроксиламина:

Таким образом, гидроксиламин является важным реактивом, дающим возможность выделять альдегиды в форме оксимов из смесей с другими веществами, с которыми гидроксиламин не реагирует.Оксимы могут использоваться также для очистки альдегидов.

Подобно гидроксиламину с альдегидами реагирует гидразин H 2 N–NH 2 ; но т.к.в молекуле гидразина две группы NH 2 ,она может реагировать с двумя молекулами альдегида.Вследствие этого обычно применяют фенилгидразин С 6 Н 5 –NH–NH 2 , т.е. продукт замещения одного водородного атома в молекуле гидразина фенильной группой C 6 H 5:

Продукты взаимодействия альдегидов с фенилгидразином называют фенилгидразонами .Фенилгидразоны бывают жидкими и твердыми, хорошо кристаллизуются. При кипячении с разбавленными кислотами подобно оксимам подвергаются гидролизу, в результате которого образуется свободный альдегид и соль фенилгидразина:

Таким образом, фенилгидразин, подобно гидроксиламину, может служить для выделения и очистки альдегидов.

Иногда для этой цели применяется другое производное гидразина, в котором водородный атом замещен не фенильной группой, а группой H 2 N–CO. Такое производное гидразина называется семикарбазидом NH 2 –NH–CO–NH 2 . Продукты конденсации альдегидов с семикарбазидом называют семикарбазонами :

Кетоны также легко конденсируются с гидроксиламином, образуя кетоксимы:

С фенилгидразином кетоны дают фенилгидразоны:

а с семикарбазидом – семикарбазоны:

Поэтому гидроксиламин, фенилгидразин и семикарбазид применяются для выделения кетонов из смесей и для их очистки в той же мере, как и для выделения и очистки альдегидов.Отделить альдегиды от кетонов этим способом, конечно, нельзя.

Алкины с концевой тройной связью взаимодействуют с аммиачным раствором Ag 2 O и выделяются в виде алкинидов серебра, например:

2(OH) – + HC=CH -> Ag–C=C–Ag + 4NH 3 + 2H 2 O.

Исходные альдегиды, кетоны, алкины могут быть легко выделены из малорастворимых продуктов замещения в чистом виде.

2. Кристаллизация

Кристаллизационные методы разделения смесей и глубокой очистки веществ основаны на различии состава фаз, образующихся при частичной кристаллизации расплава, раствора, газовой фазы. Важная характеристика этих методов – равновесный, или термодинамический, коэффициент разделения, равный отношению концентраций компонентов в равновесных фазах – твердой и жидкой (или газовой):

где x и y – мольные доли компонента в твердой и жидкой (или газовой) фазах соответственно. Если x << 1, т.е. разделяемый компонент является примесью, k 0 = x / y . В реальных условиях равновесие обычно не достигается; степень разделения при однократной кристаллизации называется эффективным коэффициентом разделения k , который всегда меньше k 0 .

Существует несколько методов кристаллизации.

При разделении смесей методом направленной кристаллизации контейнер с исходным раствором медленно передвигается из зоны нагрева в зону охлаждения.На границе зон происходит кристаллизация, фронт которой перемещается со скоростью движения контейнера.

Для разделения компонентов с близкими свойствами применяется зонная плавка очищаемых от примесей слитков в удлиненном контейнере, медленно движущемся вдоль одного или нескольких нагревателей.Участок слитка в зоне нагрева плавится, а на выходе из нее вновь кристаллизуется.Этот метод обеспечивает высокую степень очистки, но малопроизводителен, поэтому применяется, главным образом, для очистки полупроводниковых материалов (Ge, Si и др.).

Противоточная колонная кристаллизация производится в колонне, в верхней части которой имеется зона охлаждения, где образуются кристаллы, а в нижней – зона нагрева, где кристаллы плавятся.Кристаллы в колонне перемещаются под действием силы тяжести или с помощью, например, шнека в направлении, противоположном движению жидкости.Метод характеризуется большой производительностью и высоким выходом очищенных продуктов.Он применяется в производстве чистого нафталина, бензойной кислоты, капролактама, фракций жирных кислот и др.

Для разделения смесей, сушки и очистки веществ в системе твердое тело–газ используются сублимация (возгонка) идесублимация .

Сублимация характеризуется большим различием условий равновесия для разных веществ, что обеспечивает возможность разделения многокомпонентных систем, в частности, при получении веществ высокой степени чистоты.

3. Экстракция

Экстракция – метод разделения, основанный на избирательном извлечении одного или нескольких компонентов анализируемой смеси при помощи органических растворителей – экстрагентов.Как правило, под экстракцией понимают процесс распределения растворенного вещества между двумя несмешивающимися жидкими фазами, хотя в общем случае одна из фаз может быть твердой (экстракция из твердых веществ) или газообразной.Поэтому более точное название метода – жидкостно-жидкостная экстракция, или просто жидкостная экстракция .Обычно в аналитической химии применяют экстракцию веществ из водного раствора при помощи органических растворителей.

Распределение вещества X между водной и органической фазами в условиях равновесия подчиняется закону равновесия распределения. Константа этого равновесия, выражаемая как отношение между концентрациями веществ в двух фазах:

K = [X] орг /[X] водн,

при данной температуре есть величина постоянная, зависящая только от природы вещества и обоих растворителей.Эту величину называют константой распределения .Приближенно ее можно оценить по отношению растворимостей вещества в каждом из растворителей.

Фазу, в которую после жидкостной экстракции перешел экстрагируемый компонент, называют экстрактом ; фазу, обедненную этим компонентом, – рафинатом .

В промышленности наиболее распространена противоточная многоступенчатая экстракция.Необходимое число ступеней разделения составляет обычно 5–10, а для трудно разделяемых соединений – до 50–60.Процесс включает ряд типовых и специальных операций.К первым относится собственно экстракция, промывка экстракта (для уменьшения содержания в нем примесей и удаления механически захваченного исходного раствора) и реэкстракция , т.е.обратный перевод экстрагированного соединения в водную фазу с целью его дальнейшей переработки в водном растворе или повторной экстракционной очистки.Специальные операции связаны, например, с изменением степени окисления разделяемых компонентов.

Одноступенчатую жидкостную экстракцию, эффективную лишь при очень высоком значении константы распределения K , применяют преимущественно для аналитических целей.

Аппараты для жидкостной экстракции – экстракторы – могут быть с непрерывным (колонны) или ступенчатым (смесители-отстойники) контактом фаз.

Поскольку в ходе экстракции необходимо интенсивно перемешивать две несмешивающиеся жидкости, применяют преимущественно следующие виды колонн: пульсационные (с возвратно-поступательным движением жидкости), вибрационные (с вибрирующим пакетом тарелок), роторно-дисковые (с вращающимся на общем валу пакетом дисков) и т.д.

Каждая ступень смесителя-отстойника имеет смесительную и отстойную камеры.Смешение может быть механическим (мешалки) или пульсационным; многоступенчатость достигается соединением необходимого числа секций в каскад.Секции могут собираться в общем корпусе (ящичные экстракторы).Смесители-отстойники имеют преимущество перед колоннами в процессах с малым числом ступеней или с очень большими потоками жидкостей.Для переработки больших потоков перспективны центробежные аппараты.

Преимуществами жидкостной экстракции являются низкие энергетические затраты (отсутствуют фазовые переходы, требующие подвода энергии извне); возможность получения особо чистых веществ; возможность полной автоматизации процесса.

Жидкостная экстракция применяется, например, для выделения легких ароматических углеводородов из нефтяного сырья.

Экстракция вещества растворителем из твердой фазы часто используется в органической химии для извлечения природных соединений из биологических объектов: хлорофилла из зеленого листа, кофеина из кофейной или чайной массы, алкалоидов из растительного сырья и др.

4. Перегонка и ректификация

Перегонка и ректификация – важнейшие методы разделения и очистки жидких смесей, основанные на различии в составах жидкости и образующегося из нее пара.

Распределение компонентов смеси между жидкостью и паром определяется значением относительной летучести α:

αik = (y i / x i ) : (y k / x k ),

где x i и x k ,y i и y k – мольные доли компонентов i и k соответственно в жидкости и образующемся из нее паре.

Для раствора, состоящего из двух компонентов,

где x и y – мольные доли летучего компонента в жидкости и паре соответственно.

Перегонка (дистилляция) осуществляется путем частичного испарения жидкости и последующей конденсации пара.В результате перегонки отогнанная фракция – дистиллят – обогащается более летучим (низкокипящим) компонентом, а неотогнанная жидкость – кубовый остаток – менее летучим (высококипящим).Перегонку называют простой, если из исходной смеси отгоняется одна фракция, и фракционной (дробной), если отгоняется несколько фракций.При необходимости снижения температуры процесса применяют дистилляцию с водяным паром или инертным газом, барботирующими через слой жидкости.

Различают обычную и молекулярную дистилляцию.Обычную дистилляцию проводят при таких давлениях, когда длина свободного пробега молекул во много раз меньше, чем расстояние между поверхностями испарения жидкости и конденсации пара.Молекулярную дистилляцию проводят при очень низком давлении (10 –3 – 10 –4 мм рт. ст.), когда расстояние между поверхностями испарения жидкости и конденсации пара соизмеримо с длиной свободного пробега молекул.

Обычную дистилляцию применяют для очистки жидкостей от малолетучих примесей и для разделения смесей компонентов, существенно отличающихся по величине относительной летучести.Молекулярную дистилляцию применяют для разделения и очистки смесей малолетучих и термически нестойких веществ, например при выделении витаминов из рыбьего жира, растительных масел.

Если относительная летучесть α невелика (близкокипящие компоненты), то разделение смесей проводят методом ректификации.Ректификация – разделение жидких смесей на практически чистые компоненты или фракции, отличающиеся температурами кипения. Для ректификации обычно используются колонные аппараты, в которых часть конденсата (флегма) возвращается на орошение в верхнюю часть колонны.При этом осуществляется многократный контакт между потоками жидкой и паровой фаз.Движущая сила ректификации – разность между фактическими и равновесными концентрациями компонентов в паровой фазе, отвечающими данному составу жидкой фазы.Парожидкостная система стремится к достижению равновесного состояния, в результате чего пар при контакте с жидкостью обогащается легколетучими (низкокипящими) компонентами, а жидкость – труднолетучими (высококипящими).Поскольку жидкость и пар движутся навстречу друг другу (противоток), при достаточной высоте колонны в ее верхней части может быть получен почти чистый легколетучий компонент.

Ректификация может осуществляться при атмосферном или повышенном давлении, а также в условиях вакуума.При пониженном давлении снижается температура кипения и повышается относительная летучесть компонентов, что уменьшает высоту ректификационной колонны и позволяет разделять смеси термически нестойких веществ.

По конструкции ректификационные аппараты подразделяются на насадочные , тарельчатые и роторно-пленочные .

Ректификация широко применяется в промышленности для получения бензина, керосина (ректификация нефти), кислорода и азота (низкотемпературная ректификация воздуха), для выделения и глубокой очистки индивидуальных веществ (этанол, бензол и др.).

Поскольку органические вещества, в основном, термически неустойчивы, для их глубокой очистки используются, как правило,насадочные ректификационные колонны , работающие в вакууме.Иногда для получения особо чистых органических веществ используют роторно-пленочные колонны, обладающие весьма низким гидравлическим сопротивлением и малым временем пребывания в них продукта.Как правило, ректификацию в этом случае проводят в вакууме.

Ректификацию широко применяют в лабораторной практике для глубокой очистки веществ.Отметим, что перегонка и ректификация служат в то же время для определения температуры кипения исследуемого вещества, а, следовательно, дают возможность убедиться в степени чистоты последнего (постоянство температуры кипения).Для этой цели используют также специальные устройства – эбулиометры.

5.Хроматография

Хроматография – это метод разделения, анализа и физико-химического исследования веществ. Он основан на различии в скоростях движения концентрационных зон исследуемых компонентов, которые перемещаются в потоке подвижной фазы (элюента) вдоль слоя неподвижной, причем исследуемые соединения распределены между обеими фазами.

В основе всех многообразных методов хроматографии, начало которым положил М.С.Цвет в 1903 г., лежит адсорбция из газовой или жидкой фазы на твердой или жидкой поверхности раздела фаз.

В органической химии широко используются с целью разделения, очистки и идентификации веществ следующие типы хроматографии: колоночная (адсорбционная); бумажная (распределительная), тонкослойная (на специальной пластинке), газовая, жидкостная и газожидкостная.

В этих разновидностях хроматографии в контакт вступают две фазы – одна неподвижная, адсорбирующая и десорбирующая определяемое вещество, а другая – подвижная, выступающая в виде носителя этого вещества.

Обычно неподвижная фаза представляет собой сорбент с развитой поверхностью; подвижная фаза – газ (газовая хроматография) или жидкость (жидкостная хроматография) .Поток подвижной фазы фильтруется через слой сорбента или перемещается вдоль этого слоя.В газожидкостной хроматографии подвижной фазой служит газ, а неподвижной – жидкость, нанесенная обычно на твердый носитель.

Гель-проникающая хроматография – вариант жидкостной, где неподвижной фазой служит гель. (Метод позволяет разделять высокомолекулярные соединения и биополимеры в большом диапазоне молекулярных масс.) Различие в равновесном или кинетическом распределении компонентов между подвижной и неподвижной фазами – необходимое условие их хроматографического разделения.

В зависимости от цели проведения хроматографического процесса различают аналитическую и препаративную хроматографию.Аналитическая предназначена для определения качественного и количественного состава исследуемой смеси.

Хроматографию осуществляют обычно с помощью специальных приборов – хроматографов , основными частями которых являются хроматографическая колонка и детектор.В момент ввода пробы анализируемая смесь расположена в начале хроматографической колонки.Под действием потока подвижной фазы компоненты смеси начинают перемещаться вдоль колонки с различными скоростями, причем хорошо сорбируемые компоненты передвигаются вдоль слоя сорбента медленнее.Детектор на выходе из колонки автоматически непрерывно определяет концентрации разделенных соединений в подвижной фазе.Сигнал детектора, как правило, регистрируется самописцем.Полученная диаграмма называется хроматограммой .

Препаративная хроматография включает разработку и применение хроматографических методов и аппаратуры для получения особо чистых веществ, содержащих не более 0,1 % примесей.

Особенностью препаративной хроматографии является использование хроматографических колонн с большим внутренним диаметром и специальных устройств для выделения и сбора компонентов.В лабораториях на колонках диаметром 8–15 мм выделяют 0,1–10 граммов вещества, на полупромышленных установках с колоннами диаметром 10–20 см – несколько килограммов.Созданы уникальные промышленные приборы с колоннами диаметром 0,5 м для получения нескольких тонн вещества ежегодно.

Потери вещества в препаративных колоннах малы, что позволяет широко использовать препаративную хроматографию для разделения небольших количеств сложных синтетических и природных смесей.Газовая препаративная хроматография используется для получения особо чистых углеводородов, спиртов, карбоновых кислот и других органических соединений, в том числе хлорсодержащих; жидкостная – для получения лекарственных средств, полимеров с узким молекулярно-массовым распределением, аминокислот, белков и т.д.

В некоторых работах утверждается, что себестоимость продуктов высокой степени чистоты, полученных хроматографически, ниже, чем очищенных дистилляцией.Следовательно, целесообразно применять хроматографию для тонкой очистки веществ, предварительно разделенных ректификацией.

2.Элементный качественный анализ

Качественный элементный анализ - это совокупность методов, позволяющих установить, из каких элементов состоит органическое соединение. Для определения элементного состава органическое вещество предварительно путем окисления или минерализации (сплавлением со щелочными металлами) превращают в неорганические соединения, которые затем исследуют обычными аналитическими методами.

Громадным достижением А. Л. Лавуазье как химика-аналитика было создание элементного анализа органических веществ (так называемого СН-анализа).К этому времени уже существовали многочисленные методики гравиметрического анализа неорганических веществ (металлов, минералов и т.п.), но анализировать таким образом органические вещества еще не умели. Аналитическая химия того времени явно «хромала на одну ногу»; к сожалению, относительное отставание анализа органических соединений и особенно отставание теории такого анализа чувствуется даже сегодня.

Занявшись проблемами органического анализа, А. Л. Лавуазье, прежде всего, показал, что в состав всех органических веществ входят кислород и водород, очень многие содержат азот, а в составе некоторых есть сера, фосфор или другие элементы.Теперь надо было создать универсальные методики количественного определения этих элементов, прежде всего методики точного определения углерода и водорода.Для достижения этой цели А. Л. Лавуазье предложил сжигать навески исследуемого вещества и определять количество выделяющегося углекислого газа (рис. 1). При этом он основывался на двух своих наблюдениях: 1) углекислый газ образуется при сгорании любого органического вещества; 2) в исходных веществах углекислый газ не содержится, он образуется из углерода, входящего в состав любого органического вещества. Первыми объектами анализа стали легколетучие органические вещества - индивидуальные соединения типа этанола.

Рис. 1. Первый прибор А. Л. Лавуазье для анализа органических

веществ методом сжигания

Чтобы гарантировать чистоту эксперимента, высокую температуру обеспечивало не какое-либо топливо, а солнечные лучи, сфокусированные на навеске громадной линзой.Навеска сгорала в герметично закрытой установке (под стеклянным колоколом) в известном количестве кислорода, выделяющийся углекислый газ поглощали и взвешивали.Массу воды определяли косвенным методом.

Для элементного анализа малолетучих соединений А. Л. Лавуазье позднее предложил более сложные методики. В этих методиках одним из источников кислорода, необходимого для окисления пробы, стали оксиды металлов, с которыми заранее смешивали сжигаемую пробу (например, оксид свинца(IV)). Такой подход позднее использовали во многих методиках элементного анализа органических веществ, обычно он давал хорошие результаты. Однако методики СН-анализа по Лавуазье были слишком длительными, к тому же не позволяли достаточно точно определять содержание водорода: прямое взвешивание образовавшейся воды не проводилось.

Методика СН-анализа в 1814 г. была усовершенствована великим шведским химиком Йенсом Якобом Берцелиусом.Теперь навеску сжигали не под стеклянным колпаком, а в нагреваемой извне горизонтальной трубке, через которую пропускали воздух или кислород.К навеске добавляли соли, облегчающие процесс сгорания.Выделяющуюся воду поглощали твердым хлоридом кальция и взвешивали.Французский исследователь Ж. Дюма дополнил эту методику волюмометрическим определением выделяющегося азота (СНN-анализ).Методика Лавуазье-Берцелиуса была еще раз усовершенствована Ю. Либихом, который добился количественного и селективного поглощения углекислого газа в изобретенном им шариковом поглотителе (рис. 2.).

Рис. 2. Аппарат Ю. Либиха для сжигания органических веществ

Это позволило резко сократить сложность и трудоемкость СН-анализа, а самое главное - повысить его точность.Таким образом, Ю. Либих через полвека после А. Л. Лавуазье закончил начатую великим французским ученым разработку гравиметрического анализа органических веществ.Применяя свои методики, Ю. Либих к 1840-м гг.выяснил точный состав множества органических соединений (например, алкалоидов) и доказал (вместе с Ф. Велером) факт существования изомеров.Эти методики в течение многих лет оставались фактически неизменными, их точность и универсальность обеспечили быстрое развитие органической химии во второй половине XIX в. Дальнейшие усовершенствования в области элементного анализа органических веществ (микроанализ) появились лишь в начале XX в. Соответствующие исследования Ф. Прегля были удостоены Нобелевской премии (1923).

Интересно, что результаты количественного анализа какого-либо индивидуального вещества и А. Л. Лавуазье, и Ю.Либих стремились подтвердить встречным синтезом того же вещества, обращая внимание на количественные соотношения реагентов при синтезе. А. Л. Лавуазье отмечал, что у химии есть вообще два способа определить состав какого-либо вещества: синтез и анализ, и не следует считать себя удовлетворенным, пока не удастся использовать для проверки оба эти способа. Это замечание особенно важно для исследователей сложных органических веществ.Их достоверная идентификация, выявление структуры соединений сегодня, как и во времена Лавуазье, требуют правильного сочетания аналитических и синтетических методов.

Обнаружение углерода и водорода.

Метод основан на реакции окисления органического вещества порошком меди (II) оксида.

В результате окисления углерод, входящий в состав анализируемого вещества, образует углерода (IV) оксид, а водород - воду. Качественно углерод определяют по образованию белого осадка бария карбоната при взаимодействи и углерода (IV) оксида с баритовой водой. Водород обнаруживают по образованию кристаллогидрата Си804-5Н20 синего цвета.

Методика выполнения.

В пробирку 1 (рис. 2.1) помещают порошок меди (II) оксида на высоту 10 мм, добавляют равное количество органического вещества и тщательно перемешивают. В верхнюю часть пробирки 1 помещают не большой комочек ваты, на который тонким слоем насыпают белый порошок без водного меди (II) сульфата. Пробирку 1 закрывают пробкой с газоотводной трубкой 2 так, чтобы один ее конец почти касался ваты, а второй - погружают в пробирку 3 с 1 мл баритовой воды. Осторожно нагревают в пламени горелки сначала верхний слой смеси вещества с меди (II) оксидом, затем - нижний

Рис. 3 Открытие углерода и водорода

При наличии углерода наблюдают помутнение баритовой воды, обусловленное образованием осадка бария карбоната. После появления осадка пробирку 3 удаляют, а пробирку 1 продолжают нагревать до тех пор, пока пары воды не достигнут без водного меди (II) сульфата. В присутствии воды наблюдают изменение окраски кристаллов меди (II) сульфата вследствие образования кристаллогидрата CuSO4*5H2O

Обнаружение галогенов. Проба Бейлыитейна.

Метод обнаружения атомов хлора, брома и йода в органических соединениях основан на способности меди (II) оксида при высокой температуре разлагать галогенсодержащие органические соединения с образованием меди (II) галогенидов.

Анализируемую пробу наносят на конец предварительно прокаленной медной проволоки и нагревают в несветящемся пламени горелки.При наличии в пробе галогенов образующиеся меди (II) галогениды восстанавливаются до меди (I) галогенидов, которые, испаряясь, окрашивают пламя в сине-зеленый (СиС1, СиВг) или зеленый (ОД) цвет.Фторорганические соединения не окрашивают пламя меди (I) фторид нелетуч.Реакция неизбирательна в связи с тем, что определению мешают нитрилы, мочевина, тиомочевина, отдельные производные пиридина, карбоно-вые кислоты, ацетилацетон и др.При наличии щелочных и щелочноземельных металлов пламя рассматривают через синий светофильтр.

Обнаружение азота , серы и галогенов . «Проба Лассеня»

Метод основан на сплавлении органического вещества с металлическим натрием. При сплавлении азот переходит в натрия цианид, сера - в натрия сульфид, хлор, бром, йод - в соответствующие натрия галогениды.

Методика сплавления .

А. Твердые вещества.

Несколько крупинок исследуемого вещества (5-10 мг) помещают в сухую (внимание!) тугоплавкую пробирку и прибавляют не большой кусочек (величиной с рисовое зернышко) металлического натрия. Смесь осторожно нагревают в пламени горелки, равномерно прогревая пробирку, до образования однородного сплава. Необходимо следить, чтобы натрий плавился вместе с веществом. При сплавлении происходит разложение вещества. Сплавление часто сопровождается небольшой вспышкой натрия и почернением содержимого пробирки от образующихся частичек угля. Пробирку охлаждают до комнатной температуры и прибавляют 5-6 капель этилового спирта для устранения остатков металлического натрия. Убедившись, что остаток натрия прореагировал (прекращается шипение при добавлении капли спирта), в пробирку приливают 1-1,5 мл воды и нагревают раствор до кипения. Водно-спиртовый раствор фильтруют и используют для обнаружения серы, азота и галогенов.

Б. Жидкие вещества.

Тугоплавкую пробирку вертикально закрепляют на асбестовой сетке.В пробирку помещают металлический натрий и нагревают до расплавления.При появлении паров натрия по каплям вводят исследуемое вещество.Нагревание усиливают после обугливания вещества.После охлаждения содержимого пробирки до комнатной температуры его подвергают вышеприведенному анализу.

В. Легколетучие и возгоняющиеся вещества.

Смесь натрия с испытуемым веществом покрывают слоем натронной извести толщиной около 1 см, а затем подвергают вышеприведенному анализу.

Обнаружение азота. Азот качественно обнаруживают по образованию берлинской лазури (синее окрашивание).

Методика определения. В пробирку помещают 5 капель фильтрата, полученного после сплавления вещества с натрием, и добавляют 1 каплю спиртового раствора фенолфталеина. Появление малиново-красного окрашивания указывает на щелочную среду (если окраска не появилась, в пробирку добавляют 1-2 капли 5 %-ного водного раствора натрия гидроксида).При последующем добавлении 1-2 капель 10%-ного водного раствора железа (II) сульфата, обычно содержащего примесь железа (III) сульфата, образуется грязно-зеленый осадок.Пипеткой наносят 1 каплю мутной жидкости из пробирки на кусочек фильтровальной бумаги.Как только капля впиталась бумагой, на нее наносят 1 каплю 5 %-ного раствора хлороводородной кислоты.При наличии азота появляется синее пятно берлинской лазури.

Обнаружение серы.

Серу качественно обнаруживают по образованию темно-коричневого осадка свинца (II) сульфида, а также красно-фиолетового комплекса с раствором натрия нитропруссида.

Методика определения. Противоположные углы кусочка фильтровальной бумаги размером 3x3 см смачивают фильтратом, полученным при сплавлении вещества с металлическим натрием (рис. 4).

Рис. 4. Проведение пробы на сеу на квадратном листочке бумаги.

На одно из мокрых пятен, отступая 3-4 мм от его границы, наносят каплю 1 %-ного раствора свинца (II) ацетата.

На границе соприкосновения появляется темно-коричневое окрашивание, обусловленное образованием свинца (II) сульфида.

На границу другого пятна наносят каплю раствора натрия нитропруссида.На границе «вытеков» появляется интенсивное красно-фиолетовое окрашивание, постепенно изменяющее цвет.

Обнаружение серы и азота при совместном присутствии.

В ряде органических соединений, содержащих азот и серу, открытию азота мешает присутствие серы.В этом случае используют несколько видоизмененную методику определения азота и серы, основанную на том, что при нанесении на фильтровальную бумагу водного раствора, содержащего натрия сульфид и натрия цианид, последний распределяется по периферии мокрого пятна.Данная методика требует определенных навыков работы, что затрудняет ее применение.

Методика определения. В центр фильтровальной бумаги размером 3x3 см по каплям наносят фильтрат до образования бесцветного мокрого пятна диаметром около 2 см.

Рис. 5.Обнаружение серы и азота при совместном присутствии.1 - капля раствора железа (II) сульфата;2 - капля раствора свинца ацетата; 3 - капля раствора натрия нитропруссида

В центр пятна (рис. 5) наносят 1 каплю 5 %-ного раствора железа (II) сульфата.После того как капля впитается, в центр наносят 1 каплю 5 %-ного раствора хлороводородной кислоты.При наличии азота появляется синее пятно берлинской лазури.Затем по периферии мокрого пятна наносят 1 каплю 1%-ного раствора свинца (II) ацетата, а на противоположной стороне пятна - 1 каплю раствора натрия нитропруссида.Если присутствует сера, в первом случае на месте соприкосновения «вытеков» появится темно-коричневое пятно, во втором случае - пятно красно-фиолето-вового цвета.Уравнения реакций приведены выше.

Ион фтора обнаруживают по обесцвечиванию или желтому окрашиванию ализаринциркониевой индикаторной бумаги после подкисления пробы Лассеня уксусной кислотой.

Обнаружение галогенов с помощыю нитрата серебра. Галогены обнаруживают в виде галогенид-ионов по образованию хлопьевидных осадков серебра галогенидов различного цвета: серебра хлорид - белый, темнеющий на свету осадок; серебра бромид - бледно-желтый; серебра йодид - осадок интенсивно-желтого цвета.

Методика определения. К 5-6 каплям фильтрата, полученного после сплавления органического вещества с натрием, добавляют 2-3 капли разбавленной азотной кислоты.Если вещество содержит серу и азот, раствор кипятят в течение 1-2 мин для удаления сероводорода и синильной кислоты, которые мешают определению галогенов.Затем прибавляют 1-2 капли 1 \%-ного раствора серебра нитрата.Появление белого осадка свидетельствует о присутствии хлора, бледно-желтого - брома, желтого - йода.

Если необходимо уточнить, присутствует бром или йод, надо осуществить следующие реакции:

1. К 3-5 каплям фильтрата, полученного после сплавления вещества с натрием, добавляют 1-2 капли разбавленной серной кислоты, 1 каплю 5 %-ного раствора натрия нитрита или 1%-ного раствора железа (III) хлорида и 1 мл хлороформа.

При взбалтывании в присутствии йода хлороформный слой окрашивается в фиолетовый цвет.

2. К 3-5 каплям фильтрата, полученного после сплавления вещества с натрием, добавляют 2-3 капли разведенной хлороводородной кислоты, 1-2 капли 5 \%-ного раствора хлорамина и 1 мл хлороформа.

В присутствии брома хлороформный слой окрашивается в желто-бурый цвет.

В. Открытие галогенов по методу Степанова. Основано на переводе ковалентносвязанного галогена в составе органического соединения в ионное состояние действием металлического натрия в спиртовом растворе.

Обнаружение фосфора. Один из методов обнаружения фосфора основан на окислении органического вещества магния оксидом.Органически связанный фосфор переходит в фосфат-ион, который затем обнаруживают реакцией с молибденовой жидкостью.

Методика определения. Несколько крупинок вещества (5-10 мг) смешивают с двойным количеством магния оксида и озоляют в фарфоровом тигле сначала при умеренном, а затем при сильном нагревании.После охлаждения золу растворяют в концентрированной азотной кислоте, 0,5 мл полученного раствора переносят в пробирку, добавляют 0,5 мл молибденовой жидкости и нагревают.

Появление желтого осадка аммония фосфоромолибдата указывает на присутствие в составе органического вещества фосфора

3. Качественный анализ по функциональным группам

Основан на селективных реакциях функциональных групп (Смотрите презентацию по теме).

При этом используются селективные реакции осаждения, комплексообразования, разложения с выделением характерных продуктов реакции и другие. Примеры таких реакций представлены в презентации.

Интересным является то, что можно использовать образование органических соединений, известных, как органические аналитические реагенты, для группового обнаружения и идентификации. Например, аналоги диметилглиоксима взаимодействуют с никелем и палладием, а нитрозо-нафтолы и нитрозофенолы с кобальтом, железом и палладием. Эти реакции можно использовать для обнаружения и идентификации (Смотрите презентацию по теме).

4. Идентификация.

Определение степени чистоты органических веществ

Наиболее распространенным методом определения степени чистоты вещества является измерение температуры кипения при перегонке и ректификации, чаще всего используемых для очистки органических веществ.Для этого жидкость помещают в перегонную колбу (круглодонная колба с припаянной к шейке отводной трубкой), которую закрывают пробкой с вставленным в нее термометром и соединяют с холодильником.Шарик термометра должен находиться немного выше отверстия боковой трубки, через которую выходит пар.Шарик термометра, будучи погруженным в пар кипящей жидкости, принимает температуру этого пара, которую можно прочесть на шкале термометра.Если температура кипения жидкости выше 50 °С, необходимо верхнюю часть колбы закрыть теплоизоляцией.Одновременно необходимо с помощью барометра-анероида зафиксировать атмосферное давление и, в случае необходимости, сделать поправку.Если перегоняют химически чистый продукт, температура кипения остается постоянной в течение всего времени перегонки.Если же перегоняют загрязненное вещество, температура во время перегонки повышается по мере того, как удаляется более низкокипящая примесь.

Другим часто применяемым способом определения степени чистоты вещества является определение температуры плавления .Для этой цели небольшое количество исследуемого вещества помещают в запаянную с одного конца капиллярную трубочку, которую прикрепляют к термометру так, чтобы вещество находилось на одном уровне с шариком термометра.Термометр с прикрепленной к нему трубочкой с веществом погружают в какую-нибудь высококипящую жидкость, например глицерин, и медленно нагревают на слабом огне, наблюдая за веществом и за повышением температуры.Если вещество чистое, момент плавления легко заметить, т.к.вещество плавится резко и содержимое трубочки сразу становится прозрачным.В этот момент отмечают показание термометра.Загрязненные вещества обычно плавятся при более низкой температуре и в широком диапазоне.

Для контроля степени чистоты вещества можно измерить плотность .Для определения плотности жидкости или твердых веществ чаще всего пользуются пикнометром .Последний в простейшей форме представляет собой колбочку, снабженную пришлифованной стеклянной пробкой с тонким внутренним капилляром, наличие которого способствует более точному соблюдению постоянства объема при заполнении пикнометра.Объем последнего, включая капилляр, находят путем взвешивания его с водой.

Пикнометрическое определение плотности жидкости сводится к простому взвешиванию ее в пикнометре.Зная массу и объем, легко найти искомую плотность жидкости.В случае твердого вещества сначала взвешивают частично заполненный им пикнометр, что дает массу взятого для исследования образца.После этого дополняют пикнометр водой (или какой-либо другой жидкостью с известной плотностью и не взаимодействующей с исследуемым веществом) и снова взвешивают.Разность обоих взвешиваний позволяет определить объем не заполненной веществом части пикнометра, а затем объем взятого для исследования вещества.Зная массу и объем, легко найти искомую плотность вещества.

Очень часто для оценки степени чистоты органического вещества измеряют показатель преломления . Значение показателя преломления обычно приводят для желтой линии в спектре натрия с длиной волны D = 589,3 нм (линия D ).

Обычно показатель преломления определяют с помощью рефрактометра .Преимуществом этого метода определения степени чистоты органического вещества является то, что для измерения показателя преломления требуется всего несколько капель исследуемого соединения.В настоящем пособии приведены рассмотренные физические свойства важнейших органических веществ.Отметим также, что универсальным методом определения степени чистоты органического вещества являетсяхроматография .Этот метод позволяет не только показать, насколько чистым является данное вещество, но и указать, какие конкретно примеси и в каком количестве в нем содержатся.

Значительное отличие строения и свойств органических соединений от неорганических, однотипность свойств веществ одного класса, сложный состав и строение многих органических материалов обуславливают особенности качественного анализа органических соединений.

В аналитической химии органических соединений основными являются задачи отнесения анализируемых веществ к определенному классу органических соединений, разделения смесей и идентификации выделенных веществ.

Различают органический элементный анализ, предназначенный для обнаружения элементов в органических соединениях, функциональный – для обнаружения функциональных групп и молекулярный – для обнаружения отдельных веществ по особым свойствам молекул или сочетанию данных элементного и функционального анализа и физических констант.

Качественный элементный анализ

Элементы, наиболее часто встречающиеся в органических соединениях (C, N, O, H, P, S, Cl, I; реже As, Sb, F, различные металлы) обнаруживают, как правило, с помощью окислительно-восстановительных реакций. Например, углерод обнаруживают, окисляя органическое соединение триоксидом молибдена при нагревании. В присутствии углерода МоО 3 восстанавливается до низших оксидов молибдена и образует молибденовую синь (смесь синеет).

Качественный функциональный анализ

Большинство реакций обнаружения функциональных групп основано на окислении, восстановлении, комплексообразовании, конденсации. Так, например, непредельные группы обнаруживаются реакцией бромирования по месту двойных связей. Раствор брома при этом обесцвечивается:

Н 2 С = СН 2 + Br 2 → CH 2 Br – CH 2 Br

Фенолы обнаруживают реакцией комплексообразования с солями железа (III). В зависимости от типа фенола образуются комплексы различного цвета (от синего до красного).

Качественный молекулярный анализ

При выполнении качественного анализа органических соединений обычно решают два типа задач:

1. Обнаружение известного органического соединения.

2. Исследование неизвестного органического соединения.

В первом случае, зная структурную формулу органического соединения, для его обнаружения подбирают качественные реакции на функциональные группы, содержащиеся в молекуле соединения. Например, фенилсалицилат – фениловый эфир салициловой кислоты:

может быть обнаружен по функциональным группам: фенольному гидроксилу, фенильной группировке, сложноэфирной группировке и азосочетанием с любым диазосоединением. Окончательное заключение об идентичности анализируемого соединения известному веществу делают на основе качественных реакций, обязательно привлекая данные по ряду физико-химических постоянных – температуры плавления, кипения, спектры поглощения и др. Необходимость использования указанных данных объясняется тем, что одинаковые функциональные группировки могут иметь различные органические соединения.



При исследовании неизвестного органического соединения проводят качественные реакции на отдельные элементы и присутствие в нем различных функциональных групп. Получив представление о наборе элементов и функциональных групп, вопрос о строении соединения решают на основе количественных определений элементарного состава и функциональных групп, молекулярной массы, УФ-, ИК-, ЯМР-масс-спектров.

Принадлежность органических веществ к определенным классам устанавливается функциональным анализом, их чистота – хроматографией, строение – всеми существующими физико-химическими методами исследования с учетом способа получения, а в случае необходимости и результатов встречного синтеза.

Качественный элементный анализ позволяет определить, из атомов каких элементов построены молекулы органического вещества; количественный элементный анализ устанавливает состав соединения и простейшую формулу.

При выполнении элементного анализа органические вещества «минерализуют», т.е. разлагают таким образом, чтобы углерод превратился в СО 2 , водород – в Н 2 О, азот – в N 2 , NH 3 или цианид - ионы CN - и т.п. Дальнейшее определение проводят обычными методами аналитической химии.

В функциональном анализе применяются химические, физические и физико-химические методы.

Для качественных проб на функциональные группы выбирают реакции, при которых происходит изменение окраски или разделение фаз (выпадение осадка, выделение газа). Реакций, характерных только для какой-нибудь одной функциональной группы, известно немного, и для того, чтобы установить, к какому классу соединений относится данное вещество, нужно проделать несколько качественных реакций.

Лабораторная работа № 3 «Качественный элементный анализ»

Практическая часть

Опыт №1 . Открытие углерода и водорода сожжением вещества с оксидом меди (П).

Реактивы : порошок оксида меди (П), сахароза, безводный медный купорос, известковая вода.

Оборудование : пробирки, пробка с газоотводной трубкой, вата, сухое горючее.

Дня проведения эксперимента в пробирку «а» (рис. 31) насыпают черного порошка оксида меди (П) на высоту около 10 мм. Добавляют одну лопаточку сахарозы, тщательно перемешивают, энергично встряхивают пробирку.

В верхнюю часть пробирки «а» вводят в виде пробки небольшой комочек ваты (рис. 3.23.). Насыпают на вату тонкий слой белого порошка - безводного медного купороса. Закрывают пробирку «а» пробкой с газоотводной трубкой. При этом конец трубки должен почти упираться в вату с CuSO 4 . Нижний конец трубки помещают в пробирку «б», предварительно наливают внее около 1-2 мл известковой воды. Конец газоотводной трубки должен быть погружен в известковую воду.

Рис.3.23. Открытие углерода и водорода

Нагревают пробирку «а» на пламени горелки. Если пробка плотно закрывает пробирку, то через несколько секундиз газоотводной трубки начнут выходить пузырьки газа. Как только известковая вода помутнеет, вследствие выделения белого осадка СаСОз, пробирку «б» убирают. Пробирку «а» продолжают нагревать по всей длине до ваты, пока пары воды не достигнут белого порошка -обезвоженного медного купороса, находящегося на ватном тампоне, и не вызовут посинения его вследствие образования кристаллогидрата CuSО 4 · 5Н 2 О. Если слишком большой кусок ваты, то она поглотит выделившиеся пары и посинения может не произойти.

Опыт №2. Открытие азота сплавлением вещества с металлическим натрием.

Реактивы : мочевина, металлический натрий, этиловый спирт, спиртовой раствор фенолфталеина, раствор железного купороса FeS0 4 , 2 н раствора НСl.

Оборудование : сухое горючее, пробирки.

Для открытия азота 5 - 10 мг испытуемого вещества, например, несколько кристаллов мочевины, помещают в сухую пробирку. Прибавляют к мочевине небольшой кусочек металлического натрия.

Нагревают осторожно смесь в пламени горелки, пробирку вносят и выносят из пламени, не нагревая ее постоянно! Когда мочевина расплавится, следят, чтобы она смешалась с натрием (для успеха опыта необходимо чтобы натрий плавился вместе с веществом, а не отдельно от него - не на стенке пробирки!). При этом иногда наблюдается небольшая вспышка. Нагревают, пока получится однородный сплав.

Когда пробирка остынет, добавляют в нее 5 капель этилового спирта для устранения остатков металлического натрия, который реагирует со спиртом не так бурно, как с водой. При этом происходит образование алкоголята натрия с выделением водорода:

2С 2 Н 5 ОН +2Na →2C 2 H 5 0Na + Н 2

Убедившись, что остаток натрия прореагировал со спиртом (прекращается шипение от выделения пузырьков газа), добавляют в пробирку 5 капель воды и нагревают ее на пламени горенки, чтобы все растворилось. При этом цианид натрия переходит в раствор, а алкоголят натрия с водой образует едкую щелочь:

C 2 H 5 ОNa + НОН → С 2 Н 5 ОН + NaОH

Добавляют в пробирку 1 каплю спиртового раствора фенолфталеина. Появление малиново-красного окрашивания показывает, что в растворе образовалась щелочь. После этого внести в пробирку 1 каплю раствора железного купороса FeS0 4 обычно содержащего примесь соли оксида железа (III) Fe 2 (S0 4) 3 . В присутствии щелочи немедленно образуется грязно - зеленый осадок гидроксида железа (II) в смеси с желтым осадком гидроксида железа (III).

При наличии в растворе избытка цианида натрия гидроксид железа (II) образует комплексную желтую кровавую соль:

Fe(OH) 2 + 2NaCN → Fe(CN) 2 + 2 NaOH

Fe(CN) 2 + 4NaCN → Na 4

Пипеткой наносят в центр фильтровальной бумажки каплю жидкости из пробирки. Как только капля впитается, на нее наносят 1 каплю 2 н раствора НСl. После подкисления грязно-зеленый или желтоватый осадок гидроксидов железа (II) и (Ш) растворяется и при наличии азота немедленно появляется синее пятно образовавшейся берлинской лазури:

Fe(OH) 3 + 3 НСl → FeСl 3 + 3 Н 2 О

3 Na 4 + 4FeСl 3 → Fe 4 3 + 12 NaСl

Опыт № 3 . Открытие серы сплавлением органического вещества с металлическим натрием.

Реактивы : тиомочевина или сульфаниловая кислота, металлический натрий, этиловый спирт, раствора ацетата свинца Рb(СН3СОО) 2 .

Оборудование : сухое горючее, пробирки.

Для открытия серы испытуемое вещество, например, тиомочевину или сульфаниловую кислоту, помещают в сухую пробирку. Достаточно взять всего несколько кристаллов вещества.(5 – 10мг).

Добавляют к веществу кусочек металлического натрия (столбик длиной около I мм). Пробирку нагревают, следя за тем, чтобы натрий плавился не отдельно, а вместе с веществом, иначе, опыт не удастся. Наблюдаемая небольшая вспышка натрия не опасна (см. предыдущий опыт). При этом органическое вещество (тиомочевина) переходит в неорганическое соединение - сульфид натрия.

Когда пробирка остынет, прибавляют в нее 5 капель этилового спирта для устранения остатков металлического натрия, который со спиртом образует, алкоголят натрия C 2 H 5 ОNa. После окончания реакции (прекращение выделения пузырьков газа - водорода) добавляют для растворения сплава 5 капель воды и кипятят, чтобы ускорить растворение. Сульфид натрия при этом перейдет в раствор вместе с гидроксидом натрия, который, однако, не мешает дальнейшей реакции.

Для открытия серы добавляют несколько капель раствора ацетата свинца Рb(СН3СОО) 2 . При этом выпадает темно-коричневый осадок сульфида свинца:

Рb(СН 3 СОО) 2 .+ Na 2 S → PbS ↓ + 2 CH 3 COONa

Это качественная реакция на ион двухвалентной серы S -2 .

Опыт № 4. Открытие хлора при действии водорода на органическое вещество.

Реактивы : хлороформ CHСl 3 , этиловый спирт, металлический натрий, концентрированная азотная кислота HNO 3 .

Оборудование : сухое горючее, пробирки.

Помещают в пробирку I каплю хлороформа CHСl 3 . Добавляют 5 капель этилового спирта и кусочек металлического натрия (столбик длиной 1 мм). При этом происходит следующая реакция:

С 2 Н 5 ОН + Na → C 2 H 5 ОNa + Н 2

Обращают внимание на выделяющийся водород. Его можно зажечь у отверстия пробирки, если предварительно закрыть это отверстие пальцем, чтобы, накопить водород, а потом поднести отверстие к пламени горелки. Водород в момент выделения отщепляет хлор от хлороформа и образует хлористый водород, реагирующий затем с образовавшимся алкоголятом натрия.

CHCl 3 + 3H 2 → CH 4 + 3HCl

C 2 H 5 ONa + HCl → C 2 H 5 OH + NaCl

После того, как прекращается выделение водорода, для растворения образующегося белого осадка, нерастворимого в этиловом спирте, добавляют 2-3 капли воды. При этом избыток алкоголята натрия реагирует с водой, образуя щелочь:

C 2 H 5 ОNa + НОН → С 2 Н 5 ОН + NaOH

В присутствии щелочи нельзя отрывать ион хлора, так как добавление раствора нитрата серебра немедленно дает коричневый осадок оксида серебра, маскирующего осадок хлорида серебра:

AgNO 3 + 2 NaOH → Ag 2 0 + H 2 0 + 2 NaN0 3

Поэтому добавляют к раствору сначала 2 - 3капли концентрированной азотной кислоты HNO 3 (в вытяжном шкафу) для нейтрализации щелочи, а затем уже 2 капли 0,1 н раствора AgN0 3 . При наличии хлора немедленно выпадает белый творожистый осадок хлорида серебра, нерастворимый в HNO 3:

NaCl + AgNO 3 → AgCl ↓+ NaNO 3

Ни в коем случае не следует брать для реакции больше 1 капли хлороформа, так как это только вредит чувствительности реакции. Остаток не вступившего в реакцию хлороформа еще до прибавления нитрата серебра дает с водой прочную эмульсию в виде беловатой мутной жидкости, которая будет маскировать появление белой мути от хлорида серебра.

Опыт № 5. Открытие хлора по зеленой окраске пламени (проба Бейльштейна).

Реактивы : хлороформ CHСl 3 .

Оборудование : сухое горючее, медная проволока.

Берут медную проволоку длиной около 10 см, загнутую на конце петлей и вставленную другим концом в небольшую корковую пробку. Держа за пробку, прокаливают петлю впламени горелки до исчезновения посторонней окраски пламени (признак загрязнения медной петли).

2Cu + O 2 → 2 CuO

Остывшую петлю, покрывшуюся черным налетом оксида меди (II), опускают в пробирку, на дно которой помещают испытуемое вещество, например хлороформ. Смоченную веществом петлю вновь вносят в пламя горелки. Немедленно появляется характерная ярко-зеленая окраска пламени вследствие образования летучего соединения меди с хлором. Подобную же окраску пламени дают, помимо хлористых и другие галогенсодержащие органические соединения.

2CHCl 3 + 5CuO → CuCl 2 +4 CuCl + 2CO 2 + H 2 O

Для очистки проволоку можно смочить соляной кислотой и прокалить.

В отчете пишут уравнения соответствующих реакций и делают вывод о наличии анализируемых элементов в веществах.

Вопросы коллоквиума:

1. В какие неорганические соединения переводят углерод-, водород-, азот-, серо- и хлорсодержащие органические соединения для качественного определения соответствующих элементов? Почему именно в эти неорганические соединения?

2. Для чего при открытии таких элементов, как азот, сера, хлор, добавляют этиловый спирт и воду?

3. В чем смысл пробы Бейльштейна?

Лабораторная работа № 4 «Функциональный анализ»

Для того чтобы отличить ароматические углеводороды от алифатических, можно использовать некоторые цветные реакции, например реакцию ароматических углеводородов с хлороформом в присутствии хлорида алюминия. Эта реакция сопровождается образованием окрашенных продуктов. Так, при взаимодействии бензола с хлороформом в присутствии AlCl 3 кроме основного продукта реакции – бесцветного трифенилметана, образуется также окрашенная соль трифенилкарбения:

Окрашено

Эту реакцию можно также использовать для обнаружения ароматических галогенпроизводных.

Опыт. К 1-2 мл хлороформа прибавляют 2-3 капли бензола, тщательно перемешивают и пробирку слегка наклоняют, чтобы смочить стенки. Добавляют 0,5-0,6 г безводного хлорида алюминия таким образом, чтобы часть порошка попала на стенки пробирки. Обращают внимание на окраску порошка на стенке и на цвет раствора. В реакции с бензолом возникает красно-оранжевая окраска, с дифенилом – пурпурная, с нафталином – синяя, с антраценом – зеленая.

Для того чтобы различить первичные, вторичные и третичные спирты, используется различная подвижность оксогруппы в реакции спиртов с раствором хлорида цинка в концентрированной соляной кислоте:

Третичные спирты взаимодействуют с этим реактивом с большей скоростью, давая нерастворимые галогеналкилы; первичные спирты реагируют только при продолжительном нагревании или стоянии, вторичные занимают промежуточное положение.

Опыт . В три пробирки наливают свежеприготовленный раствор хлорида цинка в соляной кислоте и охлаждают. В каждую пробирку добавляют по 3-4 капли соответственно первичного, вторичного или третичного спиртов, энергично встряхивают и оставляют в стакане с водой при 25-30 0 С. О начале реакции судят по помутнению раствора вследствие образования нерастворимого галогеналкила. Отмечают время помутнения раствора в каждой пробирке.

Качественные реакции карбонильных соединений многочисленны и разнообразны, что объясняется склонностью карбонильных соединений вступать в различные реакции замещения и присоединения.

Альдегиды жирного ряда восстанавливают двухвалентную медь в одновалентную. В качестве реактива, содержащего ионы Cu 2+ , применяется реактив Фелинга. Реактив Фелинга готовят перед употреблением, смешивая свежеприготовленный гидроксид меди (II), образующийся при взаимодействии гидроксида натрия с сульфатом меди(II), и раствор сегнетовой соли. При сливании растворов образуется гидроксид меди(II), который с сегнетовой солью дает комплексное соединение типа гликолята меди:

Ароматические альдегиды эту реакцию не дают.

Опыт . Приготавливают в пробирке реактив Фелинга, сливая по 1 мл исходных растворов, и прибавляют 2 мл карбонильного соединения. Верхнюю часть содержимого пробирки нагревают и наблюдают появление желтого или красного осадки оксида меди (I).

Практическая часть

Студентам выдается набор, состоящий из 6 бесцветных и прозрачных жидкостей, среди которых находятся по одному представителю алканов, ароматических углеводородов, спиртов (первичных, вторичных и третичных) и альдегидов. Названия представителей указываются преподавателем.

Задача студента, предварительно ознакомившись с основами функционального анализа, представленного во введении, составить план анализа, чтобы по его завершению можно было сделать вывод о нахождении того или иного соединения в пронумерованной пробирке.

В отчете пишут наблюдаемые явления, протекающие реакции и ход мышления. Делают вывод о принадлежности жидкостей к тому или иному классу и обосновывают его.

Лабораторная работа №5 «Тонкослойная хроматография»

Хроматография. Одним из наиболее простых и эффективных методов изучения состава смеси органических соединений, а также установление степени чистоты является тонкослойная хроматография (ТСХ). Наиболее широко применяется адсорбционный вариант ТСХ.

Процесс хроматографического разделения в этом варианте основан на различии в относительном сродстве компонентов анализируемой смеси к неподвижной фазе (сорбенту) и осуществляется в результате перемещения подвижной фазы (элюента) под действием капиллярных сил по слою сорбента, нанесенного на стеклянную или алюминиевую пластинку.

Хроматографирование проводится следующим образом. На пластинке отмечается стартовая и финишная линия (1-1,5 см от края пластинки). На стартовую линию в виде небольших пятен с помощью капилляра (не более 2-3 мм в диаметре) наносят раствор анализируемой смеси. Затем пластинку помещают в закрытую камеру с элюентом. Элюент представляет собой растворитель или смесь растворителей в различном соотношении. В качестве хроматографических камер используют как специальные камеры, так и различную химическую посуду: эксикаторы, стаканы, чашки Петри (рис.3.24.).

a) б)

Рис. 3.24. а) Эксикатор, оборудованный для тонкослойной хроматографии; б) использование стакана и чашки Петри для тонкослойной хроматографии.

При погружении нижней части пластинки в элюент линия старта должна находиться выше уровня растворителя. Поднимаясь по пластинке снизу вверх, растворитель разделяет нанесенные исследуемые вещества, перемещая их в слое сорбента с различной скоростью в зависимости от природы и свойств вещества. В результате компоненты смеси остаются на различном расстоянии от стартовой линии. Хроматографирование заканчивают, когда граница движущегося элюента достигнет линии финиша.

Затем пластинку достают из хроматографической камеры и высушивают на воздухе. Бесцветные соединения обнаруживают оптическим (ультрафиолет) или химическими методами. Последний метод заключается в обработке хроматограммы реагентами, которые взаимодействуют с анализируемыми веществами с образованием окрашенных пятен. Наиболее доступным и универсальным методом обнаружения является обработка парами иода. Для этого хроматограмму помещают на несколько минут в эксикатор, насыщенный парами иода.

После проявления пятен рассчитывают коэффициент подвижности R f , который представляет собой отношение расстояний от стартовой линии до центра пятна к расстоянию от стартовой до финишной линий (рис.3.25):

R f =L i /L

L i – расстояние от линии старта до центра пятна вещества i (см), L – расстояние от линии старта до лини финиша (см).

Рис.3.25. Хроматограмма, полученная при разделении смеси трех компонентов методом тонкослойной хроматографии.

Так же для идентификации веществ, входящие в состав анализируемой смеси, на стартовую линию дополнительно наносят растворы известных веществ – «свидетелей». После проявления пятен и вычисления R f сравнивают характеристики «свидетеля» и анализируемого вещества.

Практическая часть

Опыт №1. Обнаружение аскорбиновой кислоты (витамин С) во фруктовых соках.

Реактивы : сок апельсина (лимона, мандарина, рябины, граната и др.), элюент (этанол – гексан 3:1), 1%-ный раствор аскорбиновой кислоты.

Оборудование

На стартовую линию пластинки наносят пробы отфильтрованного сока апельсина (лимона, мандарина, рябины, граната и др.) и 1%-ного раствора аскорбиновой кислоты так, чтобы расстояние пятен от боковых краев и между собой было не менее 1 см. Когда пятна подсохнут, пластинку помещают в стакан, на дно которого наливают 2 мл элюента (этанол – гексан 3:1). Чтобы элюент не испарялся с поверхности пластинки, накрывают стакан чашкой Петри. После достижения элюента финишной линии, вынимают пластинку и высушивают ее на воздухе. Для обнаружения соединений помещают пластинку в эксикатор с парами иода. Отмечают проявившиеся пятна и определяют значение R f аскорбиновой кислоты.

Опыт №2. Обнаружение лимонной кислоты в лимоне.

Реактивы : сок лимона, раствор лимонной кислоты, элюент (этанол – гексан 3:1).

Оборудование : чашки Петри, стаканы, адсорбент Sorbfil, капилляры.

Аналогично предыдущему опыту на пластинку наносят пробы сока лимона и раствора лимонной кислоты («свидетель»). Выполняют хроматографирование и обнаружение аналогично опыту №1. Определяют значение R f лимонной кислоты.

Опыт №3. Обнаружение кофеина в чае и кофе.

Реактивы : растворы чая, кофе и кофеина, элюент этанол.

Оборудование : чашки Петри, стаканы, адсорбент Sorbfil, капилляры.

На линию старта пластинки наносят капли водного раствора чая, кофе и кофеина («свидетель»). Пластинку помещают в хроматографическую систему с этанолом в качестве элюента. Детектирование кофеина проводят парами иода. Определяют величину R f кофеина.

Опыт №4. Выделение кофеина и качественная реакция на него.

Реактивы : сухой чай, 30%-ный водный раствор пероксида водорода, концентрированный раствор аммиака, 10%-ный раствор соляной кислоты.

Оборудование : фарфоровая чашка, воронка, вата, асбестовая сетка, сухое горючее, предметное стекло.

Кофеин можно получить из листьев чая. Для этого в фарфоровую чашку насыпают около 0,5 – 1 г сухого чая, накрывают ее воронкой с заткнутым ватным тампоном отверстием и нагревают на асбестовой сетке около 10 мин. Сначала на внутренней части воронки конденсируются капельки воды, а затем начинает возгоняться кофеин, белые тонкие кристаллы которого осаждаются на холодных стенках воронки. Нагревание прекращают и после полного охлаждения фарфоровой чашки кристаллы кофеина счищают со стенок воронки и растворяют в 1 мл воды.

Для проверки наличия кофеина 1 каплю полученного раствора наносят на предметное стекло, добавляют 1 каплю 30%-ного водного раствора пероксида водорода и 1 каплю 10%-ной соляной кислоты. Смесь осторожно выпаривают досуха над пламенем сухого горючего. Стекло охлаждают и добавляют 1 каплю концентрированного раствора аммиака, а затем стекло вновь нагревают до полного испарения воды. Пурпурно красный цвет пятна указывает на наличие кофеина.

В отчете делают вывод об обнаружении заявленных компонентов в соках, фруктах и чае (кофе).

Вопросы коллоквиума:

1. На чем основан метод ТСХ?

2. Что такое коэффициент подвижности?

3. Что такое подвижная и неподвижная фаза?

4. Назовите методы проявления бесцветных пятен.

«Изучение состава органических соединений, их очистка и определение физических констант»

1. Иванов В.Г., Гева О.Н., Гаверова Ю.Г. Практикум по органической химии. - М.: Академия, 2000.

2. Артеменко А.И. Практикум по органической химии. - М.: Высшая школа, 2001.

3. Гинзбург О.Ф. Практикум по органической химии. Синтез и идентификация органических соединений. - М.: Высшая школа, 1989.


3.2. Ознакомительный (малый) практикум.

Лабораторная работа №6 «Алифатические углеводороды»

Углеводороды наиболее простые органические соединения, молекулы которых состоят только из атомов углерода и водорода. Углеводы, в молекулах которых углеродные атомы соединены друг с другом в открытые цепи (прямые или разветвленные), называют ациклическими (алифатическими) . От лат. Aliphatic – жирный. Первыми изученными соединениями этого класса были жиры.

Алициклические углеводороды – циклические соединения, молекулы которых построены из углеродных атомов, связанных между собой σ-связью. Основными представителями алициклических углеводородов являются циклоалканы (циклопарафины) и циклоалкены (циклоолефины) .

По характеру связи между углеродными атомами углеводороды могут быть предельными (насыщенными) и непредельными (ненасыщенными). К предельным углеводородам относятся алканы (парафины), к непредельным – алкены (олефины), алкадиены и алкины.

В алканах атомы углерода связаны между собой простой (одинарной) связью, в алкенах – двойной связью, алкинах – тройной связью. Алкадиены – это непредельные соединения, в молекулах которых имеются две двойные связи.

Предельные углеводороды при обычных условиях обладают большой химической инертностью. Это объясняется тем, что все σ-связи С-С и С-Н весьма прочны (энергии этих связей порядка 380 кДж/моль). К реакциям присоединения они вообще не способны вследствие ненасыщенности всех связей атомов углерода. С большинством химических реагентов алканы или вовсе не реагируют, или реагируют чрезвычайно медленно. Сильные окислители (например, перманганат калия) при комнатной температуре тоже не действуют на алканы.

При сравнительно невысоких температурах протекает лишь небольшое число реакций, при которых происходит замена атомов водорода на различные атомы или группы – реакции замещения.

Алкены и алкины являются более реакционно-способными из-за наличия двойной и тройной связи соответственно, которые можно считать функциональными группами. Естественно ожидать, что реакции алкенов и алкинов будут происходить по ненасыщенной связи – реакции присоединения.

Важными представителями алканов является метан СН 4 – главная часть природного (до 95-98%) и попутных газов. В значительных количествах он присутствует в газах переработки. Метан используют в основном в качестве дешевого топлива (в быту и промышленности). Он бесцветен и не имеет запаха. Для обнаружения его утечки в газопроводах добавляют небольшое количество сильно пахнущего вещества (одоранта).

Метан является ценным сырьем для химической промышленности. Из него получают ацетилен, галогенпроизводные, метанол, формальдегид и другие вещества. Метан служит для производства синтез - газа (водяного газа).

Изооктан (2,2,4-триметилпентан) С 8 Н 18 – главная составная часть высококачественного горючего (бензина) для карбюраторных двигателей внутреннего сгорания.

Средние члены гомологического ряда метана С 7 – С 17 используют как горючее для двигателей (бензин, керосин), а также в качестве растворителей. Высшие алканы С 18 – С 44 – сырье для производства моющих средств, смазочных масел, пластификаторов. К высшим алканам относится озокерит (горный воск), состоящий в основном из твердых алканов с разветвленной цепью углеродных атомов, число которых превышает 25-30.

Многие алкены широко используют в качестве мономеров (исходных продуктов) для получения высоко молекулярных соединений (полимеров).

Ацетилен используют для сварки и резки металлов, т.к. при горении в кислороде ацетилен создает высокотемпературное пламя (3150 0 С). Так же ацетилен – ценный продукт для химической промышленности. Из него получают синтетический каучук, уксусный альдегид и уксусную кислоту, этиловый спирт и многие другие вещества.

Практическая часть

Опыт №1 . Получение метана и его свойства.

Реактивы : ацетат натрия, натронная известь, бромная вода, раствор перманганата калия.

Оборудование : пробирка с газоотводной трубкой, штатив, лапка штатива, горелка.

В пробирку с газоотводной трубкой помещают смесь, состоящую из одной части обезвоженного тонкоизмельченного ацетата натрия и двух частей натронной извести (NaOH и CaO). Общий объем смеси 1-2 см (около 1/3 по высоте пробирки). Закрепляют пробирку в штативе в горизонтальном положении, нагревают ее в пламени горелки.

Поджигают метан у выхода газоотводной трубки через 2 минуты после выделения газа, т.е. после того, как улетучится гремучая смесь (смесь взрывоопасна!). Обращают внимание, что метан горит светящимся пламенем.

Выделяющийся метан пропускают через растворы бромной воды и KMnO 4 .

Изменяется ли окраска растворов? Почему?

Опыт №2 . Бромирование гексана.

Реактивы : гексан, бромная вода.

Оборудование : пробирка, стаканчик со льдом, горелка, пипетка.

А) Демонстрационный опыт . В две кюветы помещают 3 мл гексана и добавляют 4-5 капель раствора брома в четыреххлористом углероде и перемешивают. Одну кювету ставят под источник УФ-света, а другую накрывают бумагой и оставляют под тягой. Через 3-4 минуты сравнивают кюветы.

Б) В сухую пробирку помещают 1 мл гексана и несколько капель бромной воды. Содержимое пробирки перемешивают на холоде. . Нагревают содержимое пробирки на водяной бане до исчезновения окраски. Реакция сопровождается выделением HBr.

Как можно обнаружить выделение HBr?

Опыт №3 . Получение этилена и изучение его свойств.

Реактивы : этиловый спирт, серная кислота, песок, бромная вода, раствор перманганата калия.

Оборудование : коническая колба на 50 мл с газоотводной трубкой, пробирки, горелка.

В коническую колбу с газоотводной трубкой помещают 4-5 мл смеси этилового спирта и серной кислоты (1:5) и добавляют немного «кипелок» для равномерного кипения. Нагревают колбу со смесью в пламени горелки. Выделяющийся газ пропускают через раствор бромной воды, не прекращая нагревания. Отмечают, исчезает ли окраска брома .

После пропускания этилена через бромную воду и раствор перманганата калия этилен можно поджечь у конца газоотводной трубки. Он горит несветящимся пламенем.

Опыт №4 . Получение ацетилена и изучение его свойств.

Реактивы : карбид кальция, бромная вода, раствор перманганата калия.

Оборудование : пробирка с газоотводной трубкой, пробирки.

В сухую пробирку помещают кусочек карбида кальция и приливают воду, быстро закрывают пробирку пробкой с газоотводной трубкой и выделяющийся газ пропускают последовательно в пробирки с бромной водой, раствором KMnO 4 . Как изменяется окраска растворов?

Поджигают газ у конца отводной трубки. Ацетилен горит коптящим пламенем.

В отчете пишут наблюдения, уравнения всех проделанных реакций и называют полученные вещества. Делают вывод о сходстве и различии свойств алифатических углеводородов.

Вопросы коллоквиума:

1. Предложите радикальный цепной механизм бромирования гексана и ионный механизм бромирования этилена.

2. Напишите уравнения реакций получения ацетилена и уравнение реакции ацетилена с аммиачным раствором оксида серебра .

3. Приведите примеры углеводородов, содержащие первичный, вторичный и третичный атом углерода. Дайте им название.

4. Дайте определение изомерии. Изобразите возможные изомеры пентана и дайте им название.

5. Нахождение в природе важнейших углеводородов и их применение.

Лабораторная работа №7 «Галогеналканы»

Галогенпроизводными углеводородов называются органические соединения, образующиеся при замене атомов водорода в углеводородах на атомы галогенов. Соответственно галогеналканами называют производные алканов, в молекулах которых один или несколько атомов водорода замещены на атомы галогена.

В зависимости от числа атомов водорода, замещенных галогеном, различают моно-, ди-, тригалогенпроизводные и т.д.

Например: СН 3 Сl (хлорметан, метилхлорид), СН 2 Сl 2 (дихлорметан, метиленхлорид), CHCl 3 (трихлорметан, хлороформ), CCl 4 (тетрахлорметан, четыреххлористый углерод, тетрахлорид углерода).

В зависимости от типа атома углерода, связанного с галогеном, галогеналканы классифицируют как первичные, вторичные и третичные.

Также как и среди углеводородов, различают предельные, непредельные, циклические и ароматические галогенпроизводные углеводородов.

бромэтан 2-бромпропан 2-бром-2-метилпропан

(этилбромид) (изопропилбромид) (трет -бутилбромид)

первичный вторичный третичный

галогеналкан галогеналкан галогеналкан

хлорциклобутан бромциклогексан бромбензол

Низшие алкилгалогениды – газообразные вещества, средние – жидкости, высшие – твердые вещества. Галогеналкилы почти нерастворимы в воде. Низшие члены ряда обладают характерным запахом.

Химические свойства галогенпроизводных определяется главным образом атомом галогена, связанного с радикалом. Галогенпроизводные вступают в реакции замещения и отщепления. Наличие кратной связи приводит к увеличению реакционной способности.

Реакции с нуклеофилами – наиболее распространенные превращения галогеналканов.

Практическая часть

Опыт№1 . Получение 2-бромпропана (бромистого изопропила).

Реактивы : изопропиловый спирт, концентрированная серная кислота, бромид калия.

Оборудование : пробирки с газоотводной трубкой, лед, штативы, стаканчики, плитка.

В пробирку с газоотводной трубкой наливают 1,5-2 мл изопропилового спирта и 2 мл концентрированной серной кислоты. Смесь охлаждают и добавляют 1-2 мл воды. Продолжая охлаждение, всыпают в пробирку 1,5 г бромида калия. Присоединив газоотводную трубку, укрепляют пробирку наклонно в лапке штатива. Конец отводной трубки погружают в другую пробирку - приемник, содержащую 1 мл воды и помещают в стаканчик с водой и льдом. Реакционную смесь осторожно нагревают до кипения до тех пор, пока в приемник не перестанут поступать маслянистые капли, опускающиеся на дно. В случае сильного вспенивания реакционной массы нагревание на короткое время прерывают. По окончании реакции при помощи делительной воронки 2-бромпропан отделяют от воды, собирая его в сухую пробирку или плоскодонную колбу. Для осушения 2-бромпропана добавляют несколько кусочков хлорида кальция. Полученный продукт используют для следующего опыта.

Опыт№2 . Отщепление галогена от галогеналкилов при действии щелочей.

Реактивы : 2-бромпропан (опыт №1), раствор гидроксида натрия, азотная кислота, 1%-ный раствор нитрата серебра.

Оборудование : Делительная воронка, пробирки, лед.

Полученный в опыте №1, 2-бромпропан промывают в делительной воронке дистиллированной водой. Воду сливают, а 2-бромпропан переливают в пробирку, в которую затем добавляют 1-2 мл раствора гидроксида натрия. Смесь нагревают до начала кипения, охлаждают в ледяной бане. В этих условиях происходит щелочной гидролиз галогеналкилов с образованием галогенида натрия. Далее для обнаружения иона галогена небольшую часть смеси подкисляют азотной кислотой и добавляют несколько капель 1%-ного раствора нитрата серебра. Что происходит?

Опыт№3 . Свойства хлороформа (трихлорметана).

Реактивы : хлороформ, 10% раствор гидроксида натрия, раствор иода в иодиде калия, 1%-ный раствор нитрата серебра, 10% раствор аммиака, 20% раствор азотной кислоты;

Оборудование : пробирки, обратные холодильники, стаканы на 100 мл, лед.

3.1. В пробирку наливают 1 мл хлороформа и 1 мл воды. Закрывают пробирку пробкой и интенсивно встряхивают. Через некоторое время образуются два слоя, так как хлороформ практически нерастворим в воде. Пояснить где находится слой органического растворителя, а где вода и почему? А так же почему хлороформ не растворяется в воде?

3.2. В пробирку наливают 1 мл хлороформа и добавляют несколько капель раствора иода в иодиде калия. Смесь интенсивно встряхивают. Через некоторое время нижний слой приобретает розовую окраску. Хлороформ хорошо растворяет иод, при встряхивании иод переходит из водного слоя в хлороформ, окрашивая его в розовый цвет.

3.3. Щелочной гидролиз хлороформа . В пробирку наливают 1 мл хлороформа и 3 мл 10% раствора гидроксида натрия. Пробирку закрывают пробкой с обратным холодильником. Смесь осторожно нагревают до начала кипения, охлаждают в ледяной бане. В этих условиях происходит щелочной гидролиз хлороформа с образованием хлорида натрия и натриевой соли муравьиной кислоты:

Методы анализа органических лекарственных веществ отличаются от методов анализа неорганических лекарственных веществ и имеют свои особенности. В отличие от неорганических большинство органических соединений не являются электролитами, поэтому для них не применимы реакции ионного типа. Исключение составляют: органические кислоты и их соли (а):

и минеральные кислоты, которые диссоциируют на ионы (б):

В то время как реакции между неорганическими соединениями, в большинстве своем, протекают мгновенно вследствие обмена между ионами, реакции органических веществ, как правило, идут медленно и часто их можно остановить на образовании промежуточных продуктов, т. е. можно наблюдать целый ряд превращении между исходным и конечным результатом. В то же время все органические соединения в большей или меньшей степени неустойчивы при высоких температурах, при сильном нагревании они полностью сгорают.

Для того чтобы установить принадлежность данного вещества к органическим соединениям. Необходимо, прежде всего, открыть в нем присутствие углерода. Иногда это не представляет затруднений, так как многие органические вещества при прокаливании обугливаются, т. е. превращаются в уголь, и тем самым подтверждают присутствие углерода. Но в целом ряде случаев органические вещества не обугливаются при прокаливании. Например, если нагревать спирт, он может испариться, а если он загорится, то сгорает без остатка. Поэтому наиболее надежным способом открытия углерода в органическом соединении является сжигание этого соединения с каким-либо окислителем.

В состав молекулы органического вещества могут входить, кроме углерода и водорода, другие неорганические элементы, часто галогены - Сl,. Вг, F, I

Как видно из приведенных формул, галоген в молекулах бромизовала, дииодтирозина и фторотана связан непосредственно с углеродом (ковалентная связь). Такие соединения не диссоциируют на ионы и поэтому определить галоген в молекуле обычными для него аналитическими реакциями (например, с раствором нитрата серебра) нельзя.

В этом случае для подтверждения наличия галогена в молекуле его надо перевести в ионогенное состояние. Для этой цели органическое вещество необходимо предварительно разрушить. Этот процесс носит название минерализации, которая проводится различными путями: сжиганием, окислением, нагреванием с гидроксидами, сплавлением со щелочными металлами др. В результате минерализации образуются простые неорганические вещества в виде галогеноводородных кислот или их солей (галогенидов), которые диссоциируют и могут быть открыты обычными для них аналитическими реакциями ионного типа.


Среди продуктов минерализации органического вещества обязательны СО 2 и Н 2 О, которые служат показателем органической природы вещества.

В анализе органических лекарственных веществ большое значение имеет определение соответствующих физических и химических показателей, которые могут служить не только для идентификации, но и для подтверждения чистоты лекарственных веществ.

Например, для твердых веществ одним из характерных показателей является температура плавления, для жидких - температура кипения, плотность, показатель преломления.

Эти показатели являются вполне определенными только для чистых веществ. .

При наличии в лекарственном веществе той или другой примеси температура плавления у твердых веществ понижается, а у жидких веществ температура кипения в процессе перегонки растет.

Показатель преломления, являясь величиной постоянной для чистого вещества, может сильно отклоняться в случае присутствия примесей. Однако определения этих показателей для органических лекарственных веществ недостаточно. Они дают лишь ориентировочное предварительное представление о чистоте лекарственного вещества. Для достоверности анализа необходимо наряду с определением физических и химических показателей проводить химический анализ.

Характерной особенностью органических лекарственных веществ является наличие в их молекулах так называемых функциональных групп, т. е. реакционноспособных атомов или групп атомов, определяющихся с помощью химических реакций.

Функциональные группы обусловливают подход к анализу органических лекарственных веществ, так как они обусловливают свойства веществ, определяют характер реакций идентификации и методов количест­венного определения того или иного лекарственного вещества. Зная реакции обнаружения отдельных функциональных групп, можно сознательно подойти к анализу любого сложного по структуре лекарственного вещества органической природы.

Функциональных групп очень много (около 100) и молекулы большинства лекарственных веществ имеют полифункциональный характер, т. е. содержат в молекуле одновременно несколько функциональных групп.

Контрольные вопросы для закрепления:

1. В чём состоит основное отличие лекарственных веществ органической природы от лекарственных веществ неорганической природы?

2. В чем основная особенность анализа органических лекарственных препаратов в отличии от неорганических?

3. Какие физические и химические показатели используются для подлинности органических лекарственных препаратов?

Обязательная:

1. Глущенко Н.Н., Плетнева Т.В., Попков В.А. Фармацевтическая химия. М.: Академия, 2004.- 384 с. с. 151-154

2. Государственная фармакопея Российской Федерации/ Издательство «Научный центр экспертизы средств медицинского применения», 2008.-704с.:ил.

Дополнительная:

1. Государственная фармакопея 11 изд., вып. 1-М: Медицина, 1987. - 336 с.

2. Государственная фармакопея 11 изд., вып. 2-М: Медицина, 1989. - 400 с.

3. Беликов В. Г.Фармацевтическая химия. – 3-е изд., М., МЕДпресс-информ- 2009. 616 с:ил.

Электронные ресурсы:

1. Фармацевтическая библиотека [Электронный ресурс].

URL:http://pharmchemlib.ucoz.ru/load/farmacevticheskaja_biblioteka/farmacevticheskaja_tekhnologija/9

2. Фармацевтические рефератики - Фармацевтический образовательный портал [Электронный ресурс]. URL: http://pharm-eferatiki.ru/pharmtechnology/

3. Компьютерное сопровождение лекции. Диск 1СD-RW.