Волновые поверхности для плоской волны. Распространение плоской волны. Отрывок, характеризующий Плоская волна

Плоской волной называется волна с плоским фронтом. При этом лучи параллельные.

Плоская волна возбуждается поблизости от колеблющейся плоскости или если рассматривается небольшой участок волнового фронта точечного излучателя. Площадь этого участка может быть тем больше, чем дальше он находится от излучателя.

Лучи, охватывающие участок плоскости рассматриваемого волнового фронта, образуют «трубу». Амплитуда звукового давления в плоской волне не уменьшается при удалении от источника, так как не происходит растекание энергии за пределы стенок этой трубы. На практике это соответствует остронаправленному излучению, например, излучению электростатических панелей большой площади, рупорных излучателей.

Сигналы в различных точках луча плоской волны отличаются фазой колебаний. Если звуковое давление на некотором участке плоского волнового фронта синусоидальное, то его можно представить в экспоненциальном виде р зв = р тзв - exp(icot). На расстоянии г по лучу оно будет запаздывать от источника колебаний:

где г/с зв - время, за которое проходит волна от источника до точки на расстоянии г вдоль луча к = (о/ с зъ = 2ж/Д - волновое число, которое определяет фазовый сдвиг между сигналами во фронтах плоской волны, находящихся на расстоянии г.

Реальные звуковые волны более сложные, чем синусоидальные, однако выкладки, проводимые для синусоидальных волн, справедливы и для несинусоидальных сигналов, если не рассматривать частоту как константу, т.е. рассматривать сложный сигнал в частотной области. Это возможно до тех пор, пока процессы распространения волн остаются линейными.

Волна, фронт которой представляет собой сферу, называется сферической. Лучи при этом совпадают с радиусами сферы. Сферическая волна формируется в двух случаях.

  • 1. Размеры источника много меньше длины волны, и расстояние до источника позволяет считать его точкой. Такой источник называется точечным.
  • 2. Источник представляет собой пульсирующую сферу.

В обоих случаях предполагается, что переотражения волны отсутствуют, т.е. рассматривается только прямая волна. Чисто сферических волн в сфере интересов электроакустики не бывает, это такая же абстракция, как и плоская волна. В области средневысоких частот конфигурация и размеры источников не позволяют считать их ни точкой, ни сферой. А в области низких частот непосредственное влияние начинает оказывать, как минимум, пол. Единственная близкая к сферической волна формируется в заглушенной камере при малых габаритах излучателя. Но рассмотрение этой абстракции позволяет уяснить некоторые важные моменты распространения звуковых волн.

На больших расстояниях от излучателя сферическая волна вырождается в плоскую волну.

На расстоянии г от излучателя звуковое давление может быть

представлено в виде р зв = -^-ехр (/ (со? t - к? г)), где p-Jr - амплитуда

звукового давления на расстоянии 1 м от центра сферы. Уменьшение звукового давления с удалением от центра сферы связано с растеканием мощности на все большую площадь - 4пг 2 . Суммарная мощность, перетекающая через всю площадь волнового фронта, не меняется, поэтому мощность, приходящаяся на единицу площади, уменьшается пропорционально квадрату расстояния. А давление пропорционально корню квадратному из мощности, поэтому оно уменьшается пропорционально собственно расстоянию. Необходимость нормирования к давлению на некотором фиксированном расстоянии (1 мв данном случае) связана с тем же фактом зависимости давления от расстояния, только в обратную сторону - при неограниченном приближении к точечному излучателю звуковое давление (а также колебательная скорость и смещение молекул) неограниченно увеличивается.

Колебательную скорость молекул в сферической волне можно определить из уравнения движения среды:

Итого, колебательная скорость v m = ^ зв ^ + к г? фазовый

/V е зв кг

сдвиг относительно звукового давления ф = -arctgf ---] (рис. 9.1).

Упрощенно говоря, наличие фазового сдвига между звуковым давлением и колебательной скоростью связано с тем, что в ближней зоне с удалением от центра звуковое давление гораздо быстрее убывает, чем запаздывает.


Рис. 9.1. Зависимость фазового сдвига ф между звуковым давлением р и колебательной скоростью v от г/к (расстояние вдоль луча к длине волны)

На рис. 9.1 можно видеть две характерные зоны:

  • 1) ближнюю г/Х« 1.
  • 2) дальнюю г/Х» 1.

Сопротивление излучения сферы радиуса г


Это значит, что не вся мощность расходуется на излучение, часть запасается в некоем реактивном элементе и затем возвращается излучателю. Физически этому элементу можно сопоставить присоединенную массу среды, колеблющуюся с излучателем:

Легко видеть, что присоединенная масса среды уменьшается с ростом частоты.

На рис. 9.2 представлена частотная зависимость безразмерных коэффициентов вещественной и мнимой составляющих сопротивления излучения. Излучение эффективно, если Re(z(r)) > Im(z(r)). Для пульсирующей сферы это условие выполняется при кг > 1.


Колебательный процесс, распространяющийся в среде в виде волны, фронт которой представляет собой плоскость , называется плоской звуковой волной . На практике плоская волна может образовываться источником, линейные размеры которого велики по сравнению с длинной излученной им волн, и если зона волнового поля находится на достаточно большом удалении от него. Но так обстоит дело в неограниченной среде. Если источник огражден каким-либо препятствием, то классический пример плоской волны, это – колебания, возбужденные жестким несгибаемым поршнем в длинной трубе (волноводе) с жесткими стенками, если диаметр поршня значительно меньше длины - излучаемых волн. Поверхность фронта в трубе из-за жестких стенок не меняется по мере распространения волны по волноводу(см. рис. 3.3). Потерями звуковой энергии на поглощение и рассеяние в воздушной среде пренебрегаем.

Если излучатель (поршень) совершает колебания по гармоническому закону с частотой
, а размеры поршня (диаметр волновода) значительно меньше длины звуковой волны, то давление, создаваемое около его поверхности,
. Очевидно, что на расстояниих давление будет
, где
– время пробега волны от излучателя до точкиx. Это выражение удобнее записать, как:
, где
- волновое число распространения волны. Произведение
- определяемый фазовый набег колебательного процесса в точке, удаленной на расстояниех от излучателя.

Подставляя полученное выражение в уравнение движения (3.1), проинтегрируем последнее относительно колебательной скорости:

(3.8)

Вообще для произвольного момента времени оказывается, что:

. (3.9)

Правая часть выражения (3.9) – характеристическое, волновое, или удельное акустическое сопротивление среды (импеданс). Само уравнение (3.), иногда, называется акустическим «законом Ома». Как следует из решения, полученное уравнение справедливо в поле плоской волны. Давление и колебательная скорость синфазны , что является следствием чисто активного сопротивления среды.

Пример: Максимальное давление в плоской волне
Па. Определить амплитуду смещения частиц воздуха по частоте?

Решение: Так как , тогда:

Из выражения (3.10) следует, что амплитуда звуковых волн очень мала, по крайней мере, в сравнении с размерами самих источников звука.

Помимо скалярного потенциала, давления и колебательной скорости звуковое поле характеризуется и энергетическими характеристиками, важнейшей из которых является интенсивность - вектор плотности потока энергии, переносимой волной за единицу времени. По определению
- есть результат произведения звукового давления на колебательную скорость.

При отсутствии потерь в среде плоская волна, теоретически, может распространяться без ослабления на сколь угодно большие расстояния, т.к. сохранение формы плоского фронта свидетельствует об отсутствии «расходимости» волны, а, значит, и об отсутствии ослабления. Иначе обстоит дело, если волна обладает искривленным фронтом. К подобным волнам относят, прежде всего, сферическую и цилиндрическую волны.

3.1.3. Модели волн с неплоским фронтом

У сферической волны поверхность равных фаз является сферой. Источником такой волны также является сфера, все точки которой колеблются с одинаковыми амплитудами и фазами, а центр остается неподвижен (см. рис. 3.4, а).

Сферическая волна описывается функцией, являющейся решением волнового уравнения в сферической системе координат, для потенциала волны, распространяющейся от источника:

. (3.11)

Действуя по аналогии с плоской волной, можно показать, что на расстояниях от источника звука значительно больше длины изучаемых волн:
. Это значит, что акустический «закон Ома» выполняется и в данном случае. В практических условиях сферические волны возбуждаются, преимущественно, компактными источниками произвольной формы, размеры которых значительно меньше длины возбуждаемых звуковых или ультразвуковых волн. Иными словами, «точечный» источник излучает, преимущественно, сферические волны. На больших расстояниях от источника или, как принято говорить, в «дальней» зоне сферическая волна применительно к ограниченным по размерам участкам волнового фронта ведет себя как плоская волна, или как говорят: «вырождается в плоскую волну». Требования к малости участка определяются не только частотой, но
- разностью расстояний между сравниваемыми точками. Отметим, что указанная функция
имеет особенность:
при
. Это вызывает определенные трудности при строгом решении дифракционных задач, связанных с излучением и рассеянием звука.

В свою очередь цилиндрические волны (поверхность волнового фронта - цилиндр) излучаются бесконечно длинным пульсирующим цилиндром (см. рис.3.4).

В дальней зоне выражение для функции потенциала такого источника асимптотически стремится к выражению:


. (3.12)

Можно показать, что и в этом случае выполняется соотношение
. Цилиндрические волны, как и сферические, в дальней зоневырождаются в плоские волны.

Ослабление упругих волн при распространении связано не только с изменением кривизны волнового фронта («расходимостью» волны), но и с наличием «затухания» т.е. ослабления звука. Формально наличие затухания в среде можно описать, представив волновое число комплексным
. Тогда, например, для плоской волны давления можно получить:Р(x , t ) = P макс
=
.

Видно, что вещественная часть комплексного волнового числа описывает пространственную бегущую волну, а мнимая часть характеризует ослабление волны по амплитуде. Поэтому величина  называется коэффициентом ослабления (затухания),  - величина размерная (Непер/м). Один «Непер» соответствует изменению амплитуды волны в «е» раз при перемещении волнового фронта на единицу длины. В общем случае ослабление определяется поглощением и рассеянием в среде:  =  погл +  расс. Указанные эффекты определяются разными причинами и могут рассматриваться отдельно.

В общем случае поглощение связано с необратимыми потерями звуковой энергии при ее превращении в тепло.

Рассеяние связано с переориентацией части энергии падающей волны на другие направления, не совпадающие с падающей волной.

: такая волна в природе не существует, так как фронт плоской волны начинается в -\mathcal{1} и заканчивается в +\mathcal{1}, чего, очевидно, быть не может. Кроме того, плоская волна переносила бы бесконечную мощность, и на создание плоской волны потребовалась бы бесконечная энергия. Волну со сложным (реальным) фронтом можно представить в виде спектра плоских волн с помощью преобразования Фурье по пространственным переменным.

Квазиплоская волна - волна, фронт которой близок к плоскому в ограниченной области. Если размеры области достаточно велики для рассматривамой задачи, то квазиплоскую волну можно приближённо считать плоской. Волну со сложным фронтом можно аппроксимировать набором локальных квазиплоских волн, векторы фазовых скоростей который нормальны реальному фронту в каждой его точке. Примерами источников квазиплоских электромагнитных волн являются лазер , зеркальная и линзовая антенны : распределение фазы электромагнитного поля в плоскости, параллельной апертуре (излучающему отверстию), близко к равномерному. По мере удаления от апертуры фронт волны принимает сложную форму.

Определение

Уравнение любой волны является решением дифференциального уравнения , называемого волновым . Волновое уравнение для функции A записывается в виде

\Delta A(\vec{r},t) = \frac {1} {v^2} \, \frac {\partial^2 A(\vec{r},t)} {\partial t^2} где

  • \Delta - оператор Лапласа ;
  • A(\vec{r},t) - искомая функция;
  • r - радиус-вектор искомой точки;
  • v - скорость волны;
  • t - время.

Одномерный случай

\Delta W_k = \cfrac {\rho} {2} \left(\cfrac {\partial A} {\partial t} \right)^2 \Delta V \Delta W_p = \cfrac {E} {2} \left(\cfrac {\partial A} {\partial x} \right)^2 \Delta V = \cfrac {\rho v^2} {2} \left(\cfrac {\partial A} {\partial x} \right)^2 \Delta V .

Полная энергия это

W = \Delta W_k + \Delta W_p = \cfrac{\rho}{2} \bigg[ \left(\cfrac {\partial A} {\partial t} \right)^2 + v^2 \left(\cfrac{\partial A}{\partial {x}} \right)^2 \bigg] \Delta V .

Плотность энергии, соответственно, равна

\omega = \cfrac {W} {\Delta V} = \cfrac{\rho}{2} \bigg[ \left(\cfrac {\partial A} {\partial t} \right)^2 + v^2 \left(\cfrac {\partial A} {\partial {x}} \right)^2 \bigg] = \rho A^2 \omega^2 \sin^2 \left(\omega t - k x + \varphi_0 \right) .

Поляризация

Напишите отзыв о статье "Плоская волна"

Литература

  • Савельев И.В. [Часть 2. Волны. Упругие волны.] // Курс общей физики / Под редакцией Гладнева Л.И., Михалина Н.А., Миртова Д.А.. - 3-е изд. - М .: Наука, 1988. - Т. 2. - С. 274-315. - 496 с. - 220 000 экз.

Примечания

См. также

Отрывок, характеризующий Плоская волна

– Жалко, жалко молодца; давай письмо.
Едва Ростов успел передать письмо и рассказать всё дело Денисова, как с лестницы застучали быстрые шаги со шпорами и генерал, отойдя от него, подвинулся к крыльцу. Господа свиты государя сбежали с лестницы и пошли к лошадям. Берейтор Эне, тот самый, который был в Аустерлице, подвел лошадь государя, и на лестнице послышался легкий скрип шагов, которые сейчас узнал Ростов. Забыв опасность быть узнанным, Ростов подвинулся с несколькими любопытными из жителей к самому крыльцу и опять, после двух лет, он увидал те же обожаемые им черты, то же лицо, тот же взгляд, ту же походку, то же соединение величия и кротости… И чувство восторга и любви к государю с прежнею силою воскресло в душе Ростова. Государь в Преображенском мундире, в белых лосинах и высоких ботфортах, с звездой, которую не знал Ростов (это была legion d"honneur) [звезда почетного легиона] вышел на крыльцо, держа шляпу под рукой и надевая перчатку. Он остановился, оглядываясь и всё освещая вокруг себя своим взглядом. Кое кому из генералов он сказал несколько слов. Он узнал тоже бывшего начальника дивизии Ростова, улыбнулся ему и подозвал его к себе.
Вся свита отступила, и Ростов видел, как генерал этот что то довольно долго говорил государю.
Государь сказал ему несколько слов и сделал шаг, чтобы подойти к лошади. Опять толпа свиты и толпа улицы, в которой был Ростов, придвинулись к государю. Остановившись у лошади и взявшись рукою за седло, государь обратился к кавалерийскому генералу и сказал громко, очевидно с желанием, чтобы все слышали его.
– Не могу, генерал, и потому не могу, что закон сильнее меня, – сказал государь и занес ногу в стремя. Генерал почтительно наклонил голову, государь сел и поехал галопом по улице. Ростов, не помня себя от восторга, с толпою побежал за ним.

На площади куда поехал государь, стояли лицом к лицу справа батальон преображенцев, слева батальон французской гвардии в медвежьих шапках.
В то время как государь подъезжал к одному флангу баталионов, сделавших на караул, к противоположному флангу подскакивала другая толпа всадников и впереди их Ростов узнал Наполеона. Это не мог быть никто другой. Он ехал галопом в маленькой шляпе, с Андреевской лентой через плечо, в раскрытом над белым камзолом синем мундире, на необыкновенно породистой арабской серой лошади, на малиновом, золотом шитом, чепраке. Подъехав к Александру, он приподнял шляпу и при этом движении кавалерийский глаз Ростова не мог не заметить, что Наполеон дурно и не твердо сидел на лошади. Батальоны закричали: Ура и Vive l"Empereur! [Да здравствует Император!] Наполеон что то сказал Александру. Оба императора слезли с лошадей и взяли друг друга за руки. На лице Наполеона была неприятно притворная улыбка. Александр с ласковым выражением что то говорил ему.
Ростов не спуская глаз, несмотря на топтание лошадьми французских жандармов, осаживавших толпу, следил за каждым движением императора Александра и Бонапарте. Его, как неожиданность, поразило то, что Александр держал себя как равный с Бонапарте, и что Бонапарте совершенно свободно, как будто эта близость с государем естественна и привычна ему, как равный, обращался с русским царем.
Александр и Наполеон с длинным хвостом свиты подошли к правому флангу Преображенского батальона, прямо на толпу, которая стояла тут. Толпа очутилась неожиданно так близко к императорам, что Ростову, стоявшему в передних рядах ее, стало страшно, как бы его не узнали.
– Sire, je vous demande la permission de donner la legion d"honneur au plus brave de vos soldats, [Государь, я прошу у вас позволенья дать орден Почетного легиона храбрейшему из ваших солдат,] – сказал резкий, точный голос, договаривающий каждую букву. Это говорил малый ростом Бонапарте, снизу прямо глядя в глаза Александру. Александр внимательно слушал то, что ему говорили, и наклонив голову, приятно улыбнулся.
– A celui qui s"est le plus vaillament conduit dans cette derieniere guerre, [Тому, кто храбрее всех показал себя во время войны,] – прибавил Наполеон, отчеканивая каждый слог, с возмутительным для Ростова спокойствием и уверенностью оглядывая ряды русских, вытянувшихся перед ним солдат, всё держащих на караул и неподвижно глядящих в лицо своего императора.
– Votre majeste me permettra t elle de demander l"avis du colonel? [Ваше Величество позволит ли мне спросить мнение полковника?] – сказал Александр и сделал несколько поспешных шагов к князю Козловскому, командиру батальона. Бонапарте стал между тем снимать перчатку с белой, маленькой руки и разорвав ее, бросил. Адъютант, сзади торопливо бросившись вперед, поднял ее.
– Кому дать? – не громко, по русски спросил император Александр у Козловского.
– Кому прикажете, ваше величество? – Государь недовольно поморщился и, оглянувшись, сказал:
– Да ведь надобно же отвечать ему.
Козловский с решительным видом оглянулся на ряды и в этом взгляде захватил и Ростова.
«Уж не меня ли?» подумал Ростов.
– Лазарев! – нахмурившись прокомандовал полковник; и первый по ранжиру солдат, Лазарев, бойко вышел вперед.
– Куда же ты? Тут стой! – зашептали голоса на Лазарева, не знавшего куда ему итти. Лазарев остановился, испуганно покосившись на полковника, и лицо его дрогнуло, как это бывает с солдатами, вызываемыми перед фронт.
Наполеон чуть поворотил голову назад и отвел назад свою маленькую пухлую ручку, как будто желая взять что то. Лица его свиты, догадавшись в ту же секунду в чем дело, засуетились, зашептались, передавая что то один другому, и паж, тот самый, которого вчера видел Ростов у Бориса, выбежал вперед и почтительно наклонившись над протянутой рукой и не заставив ее дожидаться ни одной секунды, вложил в нее орден на красной ленте. Наполеон, не глядя, сжал два пальца. Орден очутился между ними. Наполеон подошел к Лазареву, который, выкатывая глаза, упорно продолжал смотреть только на своего государя, и оглянулся на императора Александра, показывая этим, что то, что он делал теперь, он делал для своего союзника. Маленькая белая рука с орденом дотронулась до пуговицы солдата Лазарева. Как будто Наполеон знал, что для того, чтобы навсегда этот солдат был счастлив, награжден и отличен от всех в мире, нужно было только, чтобы его, Наполеонова рука, удостоила дотронуться до груди солдата. Наполеон только прило жил крест к груди Лазарева и, пустив руку, обратился к Александру, как будто он знал, что крест должен прилипнуть к груди Лазарева. Крест действительно прилип.

Плоская волна - это волна, фронт которой представляет собой плоскость. Напомним, что фронт - это эквифазная поверхность, т.е. поверхность равных фаз.

Принимаем, что в точке О (рис. 5.1) находится точечный источник, плоскость Р перпендикулярна оси Z, точки М j и М 2 лежат в плоскости Р. Принимаем также, что источник О так далеко от плоскости Р, что OMj | | ОМ 2 . Это означает, что все точки в плоскости Р, являющейся фронтом волны, равноправны, т.е. при перемещении в плоскости Р не происходит изменения состояния процесса:

Рис. 5.1.

Разрешим уравнения Гельмгольца

относительно векторов поля и исследуем полученные решения.

В этом случае из шести уравнений остаются только два уравнения:

Плоские волны в вакууме

Решение дифференциальных уравнений (5.1) имеет вид

где корни характеристического уравнения

Переходя от комплексных векторов к их мгновенным значениям, получим

Первое слагаемое представляет собой прямую волну, а второе - обратную волну. Рассмотрим первое слагаемое уравнения (5.2). На рис. 5.2 в соответствии с этим уравнением показано распределение напряженности электрического поля в момент времени t и At. Точки 1 и 2 соответствуют максимумам напряженности электрического поля. Положение максимума сместилось за время At на расстояние Az:

Равенство значений функций обеспечивается равенством аргументов: ooAt = kAz. При этом получаем уравнение для фазовой скорости

Puc. 5.2. График изменения напряженности электрического поля

Для вакуума Уф =-, С ° = -j2= = 3 10 8 м/с.

W 8 оМ-о V E oMo

Это означает, что в вакууме скорость распространения электромагнитной волны равна скорости света. Рассмотрим второе слагаемое уравнения (5.2):

Оно дает Уф =-. Это соответствует волне, распространяющейся к источнику.

Определим расстояние X между точками поля с фазами, отличающимися на 360°. Это расстояние называется длиной волны. Поскольку

где к - волновое число (постоянная распространения), то

Длина волны в вакууме Х 0 = с / /, где с - скорость света.

Фазовая скорость и длина волны в остальных средах соответственно

Как следует из формулы для фазовой скорости, она не зависит от частоты электромагнитного поля, а значит, среда без потерь недисперсионная.

Установим связь между направлениями векторов электрического и магнитного полей. Начнем с уравнений Максвелла:

Заменяем векторные уравнения скалярными, т.е. приравниваем проекции векторов в последних уравнениях:


Учтем, что в системе (5.3)

тогда получим


Из условия (5.4) очевидно, что у плоских волн нет продольных составляющих, так как E z = О, Н 2 = 0. Составим скалярное произведение (Е, Я), выразив Е х и Е у из выражений (5.4):

Поскольку скалярное произведение векторов равно нулю, векторы Ё и Я в плоской волне перпендикулярны друг другу. Из-за того, что у них нет продольных составляющих, ? и Я перпендикулярны направлению распространения. Определим отношение амплитуд векторов электрического и магнитного полей.

Принимаем, что вектор? направлен вдоль оси х, соответственно Е у - 0,Н Х - 0.

Из уравнения (5.4) Е х =-Я Я у ~-Е х. Отсюда =-=,/- -Z, сое сор Н у сое V е

где Z - волновое сопротивление среды с макроскопическими параметрами е и р;

Z 0 - волновое сопротивление вакуума. С большой степенью точности эту величину можно считать волновым сопротивлением сухого воздуха.

Запишем выражения для мгновенных значений Я и? падающей волны, используя уравнение (5.2). В результате получим

аналогично

По мере продвижения падающей волны вдоль оси z амплитуды? и Я остаются неизменными, т.е. затухания волны не происходит, так как в диэлектрике нет токов проводимости и выделения энергии в виде теплоты.

На рис. 5.3, а изображены пространственные кривые, представляющие собой графики мгновенных значений Я и?. Эти графики построены по полученным уравнениям для момента времени cot = 0. Для более позднего момента времени, например для cot + |/ п = п/2, аналогичные кривые изображены на рис. 5.3, б.


Рис. 5.3.

а - при a)t= 0; б - при u>t= п/2

Как видно на рис. 5.3, а и б, вектор Е при движении волны остается направленным вдоль оси х, а вектор Я - вдоль оси у, сдвига по фазе между Я и? нет.

Вектор Пойнтинга падающей волны направлен вдоль оси z. Его модуль изменяется по закону П = C 2 Z sin 2 ^cot + --zj. Поскольку

sin 2a = (1 - cos2a)/2, to 1-cosf 2cot+--z ] , т.е. вектор

2 L V v)_

Пойнтинга имеет постоянную составляющую C 2 Z /2 и переменную, изменяющуюся во времени с двойной угловой частотой.

На основе анализа решения волновых уравнений можно сделать следующие выводы.

  • 1. В вакууме плоские волны распространяются со скоростью света, в остальных средах скорость меньше в ^/e,.p r раз.
  • 2. Векторы электрического и магнитного полей не имеют продольных составляющих и перпендикулярны друг другу.
  • 3. Отношение амплитуд электрического и магнитного полей равно волновому сопротивлению среды, в которой происходит распространение электромагнитных волн.

> Сферические и плоские волны

Научитесь различать сферические и плоские волны . Читайте, какую волну называют плоской или сферической, источник, роль волнового фронта, характеристика.

Сферические волны возникают из точечного источника в сферическом узоре, а плоские – бесконечные параллельные плоскости, нормальные к вектору фазовой скорости.

Задача обучения

  • Вычислить источники сферических и плоских волновых узоров.

Основные пункты

  • Волны создают конструктивные и деструктивные помехи.
  • Сферические возникают из одного точечного источника в сферической форме.
  • Плоская вода – частотная, волновые фронты которой выступают бесконечными параллельными плоскостями со стабильной амплитудой.
  • В реальности не выйдет получить идеальную плоскую волну, но многие приближаются к такому состоянию.

Термины

  • Деструктивные помехи – волны мешают друг другу, а точки не совпадают.
  • Конструктивные – волны мешают и точки расположены в идентичных фазах.
  • Волновой фронт – мнимая поверхность, простирающаяся сквозь осциллирующие точки в фазе среды.

Сферические волны

Какую волну называют сферической? Разработать метод по определению способа и места распространения волн удалось Кристиану Гюйгенсу. В 1678 году он выдвинул предположение, что каждая точка, с которой сталкивается световая помеха, превращается в источник сферической волны. Суммирование вторичных волн вычисляет вид в любом времени. Этот принцип показал, что при контакте волны создают деструктивные или конструктивные помехи.

Конструктивные формируются, если волны полностью пребывают в фазе друг друга, а финальная усиливается. В деструктивных волны не соответствуют по фазам и финальная просто сокращается. Волны возникают из одного точечного источника, поэтому формируются в сферическом узоре.

Если волны генерируются из точечного источника, то выступают сферическими

Этот принцип применяет закон преломления. Каждая точка на волне создает волны, мешающие друг другу конструктивно или деструктивно

Плоские волны

Теперь давайте поймем, какую волну называют плоской. Плоская отображает частотную волну, фронты которой выступают бесконечными параллельными плоскостями со стабильной амплитудой, расположенной перпендикулярно вектору фазовой скорости. В реальности нельзя добыть истинную плоскую волну. Только плоская с бесконечной протяжностью сможет ей соответствовать. Правда, многие волны приближаются к такому состоянию. Например, антенна формирует поле, выступающее примерно плоским.

Плоские отображают бесконечное число волновых фронтов, нормальных к стороне распространения