Производная сложной неявной. Производная функции, заданной неявно. Экстремумы функции двух переменных

Известно, что функция y= f(x)может быть задана неявно с помощью уравнения, связывающем переменные х и у:

F(x,y) =0.

Сформулируем условия, при которых уравнение F(x,y )=0 определяет одну из переменных как функция другой. Справедлива следующая

Теорема (существования неявной функции) Пусть функция F(x,y )=0 удовлетворяет следующим условиям:

1) существует точка P˳(х˳,у˳), в которой F(x˳,y˳)=0

2) F’y(x˳,y˳)≠ 0

3) функции F’x (x ,y )и F’y (x ,y ) непрерывны в некоторой окрестности точки

P 0 (x 0 ,y 0).

Тогда существует единственная функция y =f (x), определенная на некотором интервале, содержащем точку, и удовлетворяющая при любом х из этого интервала уравнениюF(x,y)=0 , такая что f(x 0)= y0

Если у есть неявная функция от х , то есть она определяется из уравнения F (х , у ) = 0, то, предполагая, что у есть функция от х , мы получаем тождество F (х , у (х )) = 0, которое можно рассматривать как константу-функцию. Дифференцируя эту константу-функцию, получим:

Если в этом соотношении , то можно найти .

Дифференцируя соотношение (1) ещё раз, получим:

Соотношение (2) можно рассматривать как уравнение для определения второй производной. Дифференцируя соотношение (2) ещё раз, получим уравнение для определения третьей производной и т. д.

Производная по направлению. Вектор направления для случая двух и трех переменных (направляющие косинусы). Приращение функции по заданному направлению. Определение производной по направлению, ее выражение через частные производные. Градиент функции. Взаимное положение градиента и линии уровня в данной точке для функции двух переменных.

Производной z’I по направлению I функции двух переменных z=f(x;y) называется предел отношения приращения функции в этом направлении к величине перемещения ∆I при стремлении последней к 0: z’i=lim∆iz /∆I

Производная z’ I характеризует скорость изменения функции в направлении i.

Если функция z=f(x;y) имеет в точке М(x;y) непрерывные частные производные, то в этой точке существует производная по любому направлению, исходящему из точки М(x;y), которая вычисляется по формуле z’i=z’xˑcosα+z"yˑcosβ,где cosα, cosβ- направляющие к4осинусы вектора .

Градиентом функции z=f(x,y) называется вектор с координатами f’x, f’y. Обозначается z=(f’x,f’y) или .

Производная по направлению равна скалярному произведению градиента и единичного вектора, задающего направление I.

Вектор z в каждой точке направлен по нормали к линии уровня, проходящей через данную точку в сторону возрастания функции.

Частные производные f’x и f’y представляют собой производные функции z=f(x,y) по двум частным направлениям осей Ox и Oу.

Пусть z=f(x,y)- дифференцируемая функция в некоторой области D, M(x,y) . Пусть I – некоторое направление (вектор с началом в точке М),а =(cosα;cosβ).

При перемещении в данном направлении I точки М(х,у) в точку М1(х+∆х;y+∆y) функция z получит приращение ∆iz=f(x+∆х;y+∆y)-f(x;y) называемое приращением функции z в данном направлении I.

Если MM1=∆I то ∆x=∆icosα, ∆y=∆icosβ, следовательно, ∆iz=f(x+∆icosα; y+∆icosβ)-f(x;y).

Очень часто при решении практических задач (например, в высшей геодезии или аналитической фотограмметрии) появляются сложные функции нескольких переменных, т. е. аргументы x, y, z одной функцииf (x,y,z) ) сами являются функциями от новых переменныхU, V, W ).

Так, например, бывает при переходе от неподвижной системы координат Oxyz в подвижную системуO 0 UVW и обратно. При этом важно знать все частные производные по "неподвижным" - "старым" и "подвижным" - "новым" переменным, так как эти частные производные обычно характеризуют положение объекта в этих системах координат, и, в частности, влияют на соответствие аэрофотоснимков реальному объекту. В таких случаях применяются следующие формулы:

То есть задана сложная функцияT трех "новых" переменныхU, V, W посредством трёх "старых" переменныхx, y, z, тогда:

Замечание. Возможны вариации в количестве переменных. Например: если

В частности, еслиz = f(xy), y = y(x) , то получаем так называемую формулу "полной производной":

Эта же формула "полной производной" в случае:

примет вид:

Возможны и иные вариации формул (1.27) - (1.32).

Замечание: формула "полной производной" используется в курсе физики, раздел "Гидродинамика" при выводе основополагающей системы уравнений движения жидкости.

Пример 1.10. Дано:

Согласно (1.31):

§7 Частные производные неявно заданной функции нескольких переменных

Как известно, неявно заданная функция одной переменной определяется так: функция у независимой переменной x называется неявной, если она задана уравнением, не разрешенным относительноy :

Пример 1.11.

Уравнение

неявно задаёт две функции:

А уравнение

не задаёт никакой функции.

Теорема 1.2 (существования неявной функции).

Пусть функция z =f(х,у) и ее частные производныеf" x иf" y определены и непрерывны в некоторой окрестностиU M0 точкиM 0 (x 0 y 0 ) . Кроме того,f(x 0 ,y 0 )=0 иf"(x 0 ,y 0 )≠0 , тогда уравнение (1.33) определяет в окрестностиU M0 неявную функциюy= y(x) , непрерывную и дифференцируемую в некотором интервалеD с центром в точке x 0 , причемy(x 0 )=y 0 .

Без доказательства.

Из теоремы 1.2 следует, что на этом интервале D :

то- есть имеет место тождество по

где "полная" производная находится согласно (1.31)

То есть (1.35) дает формулу нахождения производной неявно заданной функции одной переменной x .

Аналогично определяется и неявная функция двух и более переменных.

Например, если в некоторой области V пространстваOxyz выполняется уравнение:

то при некоторых условиях на функцию F оно неявно задаёт функцию

При этом по аналогии с (1.35) ее частные производные находятся так:

Пример 1.12. Считая, что уравнение

неявно задаёт функцию

найти z" x , z" y .

поэтому согласно (1.37) получаем ответ.

§8 Частные производные второго и более высоких порядков

Определение 1.9 Частные производные второго порядка функции z=z(x,y) определяются так:

Их оказалось четыре. Причем, при некоторых условиях на функции z(x,y) выполняется равенство:

Замечание. Частные производные второго порядка могут обозначаться и так:

Определение 1.10 Частных производных третьего порядка - восемь (2 3).

Будем учиться находить производные функций, заданных неявно, то есть заданных некоторыми уравнениями, связывающими между собой переменные x и y . Примеры функций, заданных неявно:

,

Производные функций, заданных неявно, или производные неявных функций, находятся довольно просто. Сейчас же разберём соответствующее правило и пример, а затем выясним, для чего вообще это нужно.

Для того, чтобы найти производную функции, заданной неявно, нужно продифференцировать обе части уравнения по иксу. Те слагаемые, в которых присутствует только икс, обратятся в обычную производную функции от икса. А слагаемые с игреком нужно дифференцировать, пользуясь правилом дифференцирования сложной функции, так как игрек - это функция от икса. Если совсем просто, то в полученной производной слагаемого с иксом должно получиться: производная функции от игрека, умноженная на производную от игрека. Например, производная слагаемого запишется как , производная слагаемого запишется как . Далее из всего этого нужно выразить этот "игрек штрих" и будет получена искомая производная функции, заданной неявно. Разберём это на примере.

Пример 1.

Решение. Дифференцируем обе части уравнения по иксу, считая, что игрек - функция от икса:

Отсюда получаем производную, которая требуется в задании:

Теперь кое-что о неоднозначном свойстве функций, заданных неявно, и почему нужны особенные правила их дифференцирования. В части случаев можно убедиться, что подстановка в заданное уравнение (см. примеры выше) вместо игрека его выражения через икс приводит к тому, что это уравнение обращается в тождество. Так. приведённое выше уравнение неявно определяет следующие функции:

После подстановки выражения игрека в квадрате через икс в первоначальное уравнение получаем тождество:

.

Выражения, которые мы подставляли, получились путём решения уравнения относительно игрека.

Если бы мы стали дифференцировать соответствующую явную функцию

то получили бы ответ как в примере 1 - от функции, заданной неявно:

Но не всякую функцию, заданную неявно, можно представить в виде y = f (x ) . Так, например, заданные неявно функции

не выражаются через элементарные функции, то есть эти уравнения нельзя разрешить относительно игрека. Поэтому и существует правило дифференцирования функции, заданной неявно, которое мы уже изучили и далее будем последовательно применять в других примерах.

Пример 2. Найти производную функции, заданной неявно:

.

Выражаем игрек штрих и - на выходе - производная функции, заданной неявно:

Пример 3. Найти производную функции, заданной неявно:

.

Решение. Дифференцируем обе части уравнения по иксу:

.

Пример 4. Найти производную функции, заданной неявно:

.

Решение. Дифференцируем обе части уравнения по иксу:

.

Выражаем и получаем производную:

.

Пример 5. Найти производную функции, заданной неявно:

Решение. Переносим слагаемые в правой части уравнение в левую часть и справа оставляем ноль. Дифференцируем обе части уравнения по иксу.

Пусть непрерывная функция у от х задаётся неявно F (x , y ) = 0, где F (x , y ), F " x (x , y ), F " y (x , y ) есть непрерывные функции в некоторой области D, содержащей точку (х , у ), координаты которой удовлетворяют соотношениям F (x , y ) = 0, F " y (x , y ) ≠ 0. Тогда функция у от х имеет производную

Доказательство (смотри рисунок.). Пусть F " y (x , y ) > 0. Так как производная F " y (x , y ) непрерывна, то можно построить квадрат [х 0 - δ" , х 0 + δ" , у 0 - δ" , у 0 + δ" ], чтобы для всех его точек было F " y (x , y ) > 0, то есть F (x , y ) является монотонной по у при фиксированном х . Таким образом, выполнены все условия теоремы существования неявной функции у = f (x ), такой, что F (x , f (x )) º 0.
Зададим приращение Δ х . Новому значению х + Δ х будет соответствовать у + Δ у = f (x + Δ x ), такое, что эти значения удовлетворяют уравнению F (x + Δ x , y + Δ y ) = 0. Очевидно, что

Δ F = F (x + Δ x , y + Δ y ) − F (x , y ) = 0

и в этом случае

.

Из (7) имеем

.

Так как неявная функция у = f (x ) будет непрерывна, то Δ у → 0 при Δ х → 0, значит α → 0 и β → 0. Откуда окончательно имеем

.

Что и требовалось доказать.

Частные производные и дифференциалы высших порядков.

Пусть частные производные функции z = f (x , y ), определенной в окрестности точки М, существуют в каждой точке этой окрестности. В этом случае частные производные представляют собой функции двух переменных х и у , определенные в указанной окрестности точки М. Назовем их частными производными первого порядка. В свою очередь, частные производные по переменным х и у от функций в точке М, если они существуют, называются частными производными второго порядка от функции f (М ) в этой точке и обозначаются следующими символами

Частные производные второго порядка вида , , называются смешенными частными производными.

Дифференциалы высших порядков

Будем рассматривать dx в выражении для dy как постоянный множитель.Тогда функция dy представляет собой функцию только аргумента x и ее дифференциал в точке x имеет вид (при рассмотрении дифференциала от dy будем использовать новые обозначения для дифференциалов):

δ (d y ) = δ [f " (x ) d x ] = [f " (x ) d x ] " δ x = f "" (x ) d (x ) δx .

Дифференциал δ (d y ) от дифференциала dy в точке x , взятый при δx = dx , называется дифференциалом второго порядка функции f (x ) в точке x и обозначается d 2 y , т.е.

d 2 y = f ""(x )·(dx ) 2 .

В свою очередь, дифференциал δ(d 2 y ) от дифференциала d 2 y , взятый при δx = dx , называется дифференциалом третьего порядка функции f (x ) и обозначается d 3 y и т.д. Дифференциал δ(d n-1 y) от дифференциала d n -1 f , взятый при δx = dx , называется дифференциалом n - го порядка (или n - м дифференциалом) функции f (x ) и обозначается d n y .
Докажем, что для n - го дифференциала функции справедлива формула

d n y = y (n ) ·(dx ) n , n = 1, 2, … (3.1)

При доказательстве воспользуемся методом математической индукции. Для n = 1 и n = 2 формула (3.1) доказана. Пусть она верна для дифференциалов порядка n - 1

d n −1 y = y (n −1) ·(dx ) n −1 ,

и функция y (n -1) (x ) дифференцируема в некоторой точке x . Тогда

Полагая δx = dx , получаем

что и требовалось доказать.
Для любого n справедливо равенство

или

т.е. n - я производная функции y = f (x ) в точке x равна отношению n - го дифференциала этой функции в точке x к n - й степени дифференциала аргумента.

Производная по направлению функций нескольких переменных.

Рассматривается функция и единичный вектор . Проводится прямая l через т.М 0 с направляющим вектором

Определение 1. Производная функции u = u (x , y , z ) по переменной t называется производной по направлению l

Так как на этой прямой u – сложная функция одной переменной, то производная по t равна полной производной по t (§ 12).

Она обозначается и равна

Формула производной функции, заданной неявно. Доказательство и примеры применения этой формулы. Примеры вычисления производных первого, второго и третьего порядка.

Содержание

Производная первого порядка

Пусть функция задана неявным образом с помощью уравнения
(1) .
И пусть это уравнение, при некотором значении , имеет единственное решение . Пусть функция является дифференцируемой функцией в точке , причем
.
Тогда, при этом значении , существует производная , которая определяется по формуле:
(2) .

Доказательство

Для доказательства рассмотрим функцию как сложную функцию от переменной :
.
Применим правило дифференцирования сложной функции и найдем производную по переменной от левой и правой частей уравнения
(3) :
.
Поскольку производная от постоянной равна нулю и , то
(4) ;
.

Формула доказана.

Производные высших порядков

Перепишем уравнение (4), используя другие обозначения:
(4) .
При этом и являются сложными функциями от переменной :
;
.
Зависимость определяет уравнение (1):
(1) .

Находим производную по переменной от левой и правой части уравнения (4).
По формуле производной сложной функции имеем:
;
.
По формуле производной произведения :

.
По формуле производной суммы :


.

Поскольку производная правой части уравнения (4) равна нулю, то
(5) .
Подставив сюда производную , получим значение производной второго порядка в неявном виде.

Дифференцируя, аналогичным образом, уравнение (5), мы получим уравнение, содержащее производную третьего порядка :
.
Подставив сюда найденные значения производных первого и второго порядков, найдем значение производной третьего порядка.

Продолжая дифференцирование, можно найти производную любого порядка.

Примеры

Пример 1

Найдите производную первого порядка от функции, заданной неявно уравнением:
(П1) .

Решение по формуле 2

Находим производную по формуле (2):
(2) .

Перенесем все переменные в левую часть, чтобы уравнение приняло вид .
.
Отсюда .

Находим производную по , считая постоянной.
;
;
;
.

Находим производную по переменной , считая переменную постоянной.
;
;
;
.

По формуле (2) находим:
.

Мы можем упростить результат если заметим, что согласно исходному уравнению (П.1), . Подставим :
.
Умножим числитель и знаменатель на :
.

Решение вторым способом

Решим этот пример вторым способом. Для этого найдем производную по переменной левой и правой частей исходного уравнения (П1).

Применяем :
.
Применяем формулу производной дроби :
;
.
Применяем формулу производной сложной функции :
.
Дифференцируем исходное уравнение (П1).
(П1) ;
;
.
Умножаем на и группируем члены.
;
.

Подставим (из уравнения (П1)):
.
Умножим на :
.

Пример 2

Найти производную второго порядка от функции , заданной неявно с помощью уравнения:
(П2.1) .

Дифференцируем исходное уравнение, по переменной , считая что является функцией от :
;
.
Применяем формулу производной сложной функции.
.

Дифференцируем исходное уравнение (П2.1):
;
.
Из исходного уравнения (П2.1) следует, что . Подставим :
.
Раскрываем скобки и группируем члены:
;
(П2.2) .
Находим производную первого порядка:
(П2.3) .

Чтобы найти производную второго порядка, дифференцируем уравнение (П2.2).
;
;
;
.
Подставим выражение производной первого порядка (П2.3):
.
Умножим на :

;
.
Отсюда находим производную второго порядка.

Пример 3

Найти производную третьего порядка при от функции , заданной неявно с помощью уравнения:
(П3.1) .

Дифференцируем исходное уравнение по переменной считая, что является функцией от .
;
;
;
;
;
;
(П3.2) ;

Дифференцируем уравнение (П3.2) по переменной .
;
;
;
;
;
(П3.3) .

Дифференцируем уравнение (П3.3).
;
;
;
;
;
(П3.4) .

Из уравнений (П3.2), (П3.3) и (П3.4) находим значения производных при .
;
;
.