Формула для определения коэффициента трения скольжения. Как определить коэффициент трения скольжения? А. Общие положения

2.2.4. Сила трения

Сила трения действует не только на движущееся тело, но и на тело, находящееся в покое, если существуют силы, которые стремятся этот покой нарушить. На тело, которое катится по опоре, также действует сила трения.

Сила трения покоя численно равна составляющей силы, направленной вдоль поверхности, на которой находится данное тело, и стремящейся сдвинуть его с места (рис. 2.7):

F тр.пок = F x .

Рис. 2.7

При достижении указанной составляющей некоторого критического значения (F x = F крит) тело начинает двигаться. Критическое значение силы, которое соответствует началу движения, определяется формулой

F x = F крит = µ пок N ,

где µ пок - коэффициент трения покоя; N - модуль силы нормальной реакции опоры (эта сила численно равна весу тела).

В момент начала движения сила трения покоя достигает максимального значения:

F тр. пок max = μ пок N .

Сила трения скольжения постоянна и определяется произведением:

F тр.ск = µ ск N ,

где µ ск - коэффициент трения скольжения; N - модуль силы нормальной реакции опоры.

При решении задач считают, что коэффициенты трения покоя µ пок и скольжения µ ск равны между собой:

µ пок = µ ск = µ.

На рис. 2.8 изображен график зависимости величины силы трения F тр от проекции силы F x , стремящейся сдвинуть тело, на ось, направленную вдоль поверхности предполагаемого движения.

Рис. 2.8

Для того чтобы определить, будет ли данное тело находиться в покое или начнет двигаться под действием приложенной силы определенной величины и направления, необходимо:

F крит = µN ,

где µ - коэффициент трения; N - модуль силы нормальной реакции опоры;

3) сравнить значения F крит и F x :

  • если F x > F крит, то тело движется под действием приложенной силы; в этом случае сила трения скольжения рассчитывается как

F тр.ск = µN ;

  • если F x < F крит, то тело покоится под действием приложенной силы; в этом случае сила трения покоя рассчитывается как

F тр.пок = F x .

Модуль силы трения качения F тр.кач пропорционален коэффициенту трения качения µ кач, модулю силы нормальной реакции опоры N и обратно пропорционален радиусу R катящегося тела:

F тр. кач = μ кач N R .

Пример 13. К телу массой 6,0 кг, лежащему на горизонтальной поверхности, приложена сила 25 Н, направленная вдоль поверхности. Найти силу трения, если коэффициент трения равен 0,5.

Решение. Произведем оценку величины силы, способной вызвать движение тела, по формуле

F кр = µN ,

где µ - коэффициент трения; N - модуль силы нормальной реакции опоры, численно равной весу тела (P = mg ).

Величина критической силы, достаточной для начала движения тела, составляет

F кр = μ m g = 0,5 ⋅ 6,0 ⋅ 10 = 30 Н.

Проекция силы, приложенной к телу в горизонтальном направлении, на ось предполагаемого движения Ox (см. рисунок) равна

F x = F = 25 Н.

F x < F кр,

т.е. величина приложенной к телу силы меньше величины силы, способной вызвать его движение. Следовательно, тело находится в состоянии покоя.

Искомая сила трения - сила трения покоя - равна внешней горизонтальной силе, стремящейся этот покой нарушить:

F тр.пок = F x = 25 Н.

Пример 14. Тело находится на наклонной плоскости с углом при основании 30°. Вычислить силу трения, если коэффициент трения равен 0,5 3 . Масса тела равна 3,0 кг.

Решение. На рисунке стрелкой показано направление предполагаемого движения.

Выясним, останется ли тело в покое или начнет двигаться. Для этого рассчитаем величину критической силы, способной вызвать движение, т.е.

F кр = µN ,

где µ - коэффициент трения; N = mg  cos α - величина силы нормальной реакции наклонной плоскости.

Расчет дает значение указанной силы:

F кр = μ m g cos 30 ° = 0,5 3 ⋅ 3,0 ⋅ 10 ⋅ 3 2 = 22,5 Н.

Из состояния покоя тело стремится вывести проекция силы тяжести на ось Ox , величина которой составляет

F x = mg  sin 30° = 15 Н.

Таким образом, имеет место неравенство

F x < F кр,

т.е. проекция силы, стремящейся вызвать движение тела, меньше величины силы, способной это сделать. Следовательно, тело сохраняет состояние покоя.

Искомая сила - сила трения покоя - равна

F тр = F x = 15 Н.

Пример 15. Шайба находится на внутренней поверхности полусферы на высоте 10 см от нижней точки. Радиус полусферы составляет 50 см. Вычислить коэффициент трения шайбы о сферу, если известно, что указанная высота является максимально возможной.

Решение. Проиллюстрируем условие задачи рисунком.

Шайба, согласно условию задачи, находится на максимально возможной высоте. Следовательно, сила трения покоя, действующая на шайбу, имеет максимальное значение, совпадающее с проекцией силы тяжести на ось Ox :

F тр. пок max = F x ,

где F x = mg  cos α - модуль проекции силы тяжести на ось Ox ; m - масса шайбы; g - модуль ускорения свободного падения; α - угол, показанный на рисунке.

Максимальная сила трения покоя совпадает с силой трения скольжения:

F тр. пок max = F тр. ск,

где F тр.ск = µN - модуль силы трения скольжения; N = mg  sin α - величина силы нормальной реакции поверхности полусферы; µ - коэффициент трения.

Коэффициент трения определим, записав указанное равенство в явном виде:

mg  cos α = µmg  sin α.

Отсюда следует, что искомый коэффициент трения определяется тангенсом угла α:

Указанный угол определим из дополнительного построения:

tg α = R − h 2 h R − h 2 ,

где h - предельная высота, на которой может находиться шайба; R - радиус полусферы.

Расчет дает значение тангенса:

tg α = 0,5 − 0,1 2 ⋅ 0,1 ⋅ 0,5 − (0,1) 2 = 4 3

и позволяет вычислить искомый коэффициент трения.

Глава 15. Теорема об изменении кинетической энергии.

15.3. Теорема об изменении энергии кинетической точки и твердого тела при поступательном движении.

15.3.1. Какую работу совершают действующие на материальную точку си­лы, если ее кинетическая энергия уменьшается с 50 до 25 Дж? (Ответ -25)

15.3.2. Свободное падение материальной точки массой m начинается из состояния покоя. Пренебрегая сопротивлением воздуха, опреде­лить путь, пройденный точкой к моменту времени, когда она имеет скорость 3 м/с. (Ответ 0,459)

15.3.3. Материальная точка массой m = 0,5 кг брошена с поверхности Земли с начальной ско­ростью v о = 20 м/с и в положении М имеет скорость v = 12 м/с. Определить работу силы тяжести при перемещении точки из положения М о в положение М (Ответ -64)

15.3.4. Материальная точка массой m брошена с поверхности Земли под углом α = 60° к гори­зонту с начальной скоростью v 0 = 30 м/с. Определить наибольшую высоту h подъема точки. (Ответ 34,4)

15.3.5. Тело массой m = 2 кг от толчка поднимается по наклонной плос­кости с начальной скоростью v о = 2 м/с. Определись работу силы тяжести на пути, пройденном телом до остановки. (Ответ -4)

15.3.6. Материальная точка М массой m, подве­шенная на нити длиной ОМ = 0,4 м к непод­вижной точке О, отведена на угол α = 90° от положения равновесия и отпущена без началь­ной скорости. Определить скорость этой точки во время ее прохождения через положение рав­новесия. (Ответ 2,80)

15.3.7. Кабина качелей подвешена на двух стерж­нях длиной l = 0,5 м. Определить скорость кабины при прохождении ею нижнего положе­ния, если в начальный момент стержни были отклонены на угол φ = 60° и отпущены без начальной скорости. (Ответ 2,21)

15.3.8. Материальная точка М массой m движется под действием силы тяжести по внутренней поверхности полуцилиндра радиуса r = 0,2 м. Определить скорость материальной точки в точке В поверхности, если ее скорость в точке A равна нулю. (Ответ 1,98)

15.3.9. По проволоке АВС, расположенной в вер­тикальной плоскости и изогнутой в виде дуг окружностей радиусов r 1 , = 1 м, r 2 = 2 м, может скользить без трения кольцо D массой m. Определить скорость кольца в точке С, если его скорость в точке А равна нулю. (Ответ 9,90)

15.3.10. По горизонтальной плоскости движется тело массой m = 2 кг, которому была сооб­щена начальная скорость v 0 = 4 м/с. До оста­новки тело прошло путь, равный 16 м. Опре­делить модуль силы трения скольжения между телом и плоскостью. (Ответ 1)

15.3.11. Тело массой m = 100 кг начинает движе­ние из состояния покоя по горизонтальной шероховатой плоскости под действием постоян­ной силы F. Пройдя путь, равный 5 м, скорость тела становится равной 5 м/с. Определить модуль силы F, если сила трения скольжения F тр = 20 Н. (Ответ 270)

15.3.12. Хоккеист, находясь на расстоянии 10 м от ворот, клюшкой сооб­щает шайбе, лежащей на льду, скорость 8 м/с. Шайба, скользя по по­верхности льда, влетает в ворота со скоростью 7,7 м/с. Определить коэффициент трения скольжения между шайбой и поверхностью льда.
(Ответ 2,40 10 -2)

15.3.13. По наклонной плоскости спускается без начальной скорости тело массой m = 1кг. Оп­ределить кинетическую энергию тела в момент времени, когда оно прошло путь, равный 3 м, если коэффициент трения скольжения между телом и наклонной плоскостью f = 0,2. (Ответ 9,62)

15.3.14. По наклонной плоскости спускается без начальной скорости груз массой m. Какую ско­рость v будет иметь груз, пройдя путь, равный 4м от начала движения, если коэффициент трения скольжения между грузом и наклонной плоскостью равен 0,15? (Ответ 5,39)

15.3.15. К ползуну 1 массой m = 1 кг прикреплена пружина 2. Пружину сжимают из свободного состояния на величину 0,1 м, после чего груз отпускают без начальной скорости. Определить жесткость пружины, если груз, пройдя путь, равный 0,1 м, приобретает скорость 1 м/с.
(Ответ 100)

Силой трения () называют силу, возникающую при относительном движении тел. Эмпирически установлено, что сила трения скольжения зависит от силы взаимного давления тел (реакции опоры) (N), материалов поверхностей трущихся тел, скоростей относительного движения.

ОПРЕДЕЛЕНИЕ

Физическая величина, которая характеризует трущиеся поверхности, называется коэффициентом трения . Чаще всего коэффициент трения обозначают буквами k или .

В общем случае коэффициент трения зависит от скорости движения тел относительно друг друга. Надо отметить, что зависимость обычно не принимается во внимание и коэффициент трения скольжения считают постоянным. В большинстве случаев силу трения

Коэффициент трения скольжения величина безразмерная. Коэффициент трения зависит от: качества обработки поверхностей, трущихся тел, присутствия на них грязи, скорости движения тел друг относительно друга и т.д. Коэффициент трения определяют эмпирически (опытным путем).

Коэффициент трения, который соответствует максимальной силе трения покоя в большинстве случаев больше, чем коэффициент трения скольжения.

Для большего числа пар материалов величина коэффициента трения не больше единицы и лежит в пределах

На значение коэффициента трения любой пары тел, между которыми рассматривается сила трения, оказывает влияние давление, степень загрязненности, площади поверхности тел и другое, что обычно не учитывается. Поэтому те значения коэффициентов сил трения, которые указаны в справочных таблицах, полностью совпадают с действительностью лишь при условиях, в которых они были получены. Следовательно, значения коэффициентов сил трения нельзя считать неизменной для одной и той де пары трущихся тел. Так, различают коэффициенты терния для сухих поверхностей и поверхностей со смазкой. Например, коэффициент терния скольжения для тела из бронзы и тела из чугуна, если поверхности материалов сухие равен Для этой же пары материалов коэффициент терния скольжения при наличии смазки

Примеры решения задач

ПРИМЕР 1

Задание Тонкая металлическая цепь лежит на горизонтальном столе (рис.1). Ее длина равна , масса . Конец цепи свешивается с края стола. Если длина свешивающейся части цепи составит часть от длины всей цепи, она начинает скользить вниз со стола. Каков коэффициент трения цепи о стол, если цепь считать однородной по длине?

Решение Цепь движется под действием силы тяжести. Пусть сила тяжести, действующая на единицу длины цепи равна . В таком случае в момент начала скольжения сила тяжести, которая действует на свешивающуюся часть, будет:

До начала скольжения эта сила уравновешивается силой трения, которая действует на часть цепи, которая лежит на столе:

Так как силы уравновешиваются, то можно записать ():

Ответ

ПРИМЕР 2

Задание Каков коэффициент трения тела о наклонную плоскость, если угол наклона плоскости равен а ее длина равна . Тело по плоскости двигалось с постоянным ускорением в течение времени t.
Решение В соответствии со вторым законом Ньютона равнодействующая сил приложенных к движущемуся с ускорением телу равна:

В проекциях на оси X и Y уравнения (2.1), получим:

Если брусок тянут с помощью динамометра с постоянной скоростью, то динамометр показывает модуль силы трения скольжения (F тр). Здесь сила упругости пружины динамометра уравновешивает силу трения скольжения.

С другой стороны, сила трения скольжения зависит от силы нормальной реакции опоры (N), которая возникает в следствие действия веса тела. Чем вес больше, тем больше сила нормальной реакции. И чем больше сила нормальной реакции, тем больше сила трения . Между этими силами существует прямая пропорциональная зависимость, которую можно выразить формулой:

Здесь μ – это коэффициент трения . Он показывает, как именно сила трения скольжения зависит от силы нормальной реакции (или, можно сказать, от веса тела), какую долю от нее составляет. Коэффициент трения - безразмерная величина. Для разных пар поверхностей μ имеет разное значение.

Так, например, деревянные предметы трутся друг о друга с коэффициентом от 0,2 до 0,5 (в зависимости от вида деревянных поверхностей). Это значит, что если сила нормальной реакции опоры 1 Н, то при движении сила трения скольжения может составить значение, лежащее в промежутке от 0,2 Н до 0,5 Н.

Из формулы F тр = μN следует, что зная силы трения и нормальной реакции, можно определить коэффициент трения для любых поверхностей:

Сила нормальной реакции опоры зависит от веса тела. Она равна ему по модулю, но противоположна по направлению. Вес тела (P) можно вычислить, зная массу тела. Таким образом, если не учитывать векторность величин, можно записать, что N = P = mg. Тогда коэффициент трения находится по формуле:

μ = F тр / (mg)

Например, если известно, что сила трения тела массой 5 кг, движущегося по поверхности, равна 12 Н, то можно найти коэффициент трения: μ = 12 Н / (5 кг ∙ 9,8 Н/кг) = 12 Н / 49 Н ≈ 0,245.