Время в классической и релятивистской физике. Релятивистская механика. Взаимосвязь между массой и энергией

Специальная, или частная теория относительности - это теория структуры пространства-времени . Впервые была представлена в 1905 году Альбертом Эйнштейном в работе «К электродинамике движущихся тел». Теория описывает движение, законы механики , а также пространственно-временные отношения, определяющие их, при скоростях движения, близких к скорости света . Классическая механика Ньютона в рамках специальной теории относительности является приближением для малых скоростей.

Общая теория относительности

Общая теория относительности - теория гравитации, разработанная Эйнштейном в 1905-1917 годах . Является дальнейшим развитием специальной теории относительности . В общей теории относительности постулируется, что гравитационные эффекты обусловлены не силовым взаимодействием тел и полей , а деформацией самого пространства-времени, в котором они находятся. Эта деформация связана, в частности, с присутствием массы-энергии.

Ссылки

  • Общая теория относительности - пространственно-временной континуум (рус.) - Просто о сложном.
  • Специальная теория относительности (рус.) - Просто о сложном.

Wikimedia Foundation . 2010 .

Смотреть что такое "Релятивистская физика" в других словарях:

    Физика и реальность - «ФИЗИКА И РЕАЛЬНОСТЬ» сборник статей А. Эйнштейна, написанных в разные периоды его творческой жизни. Рус. издание М., 1965. В книге нашли отражение основные эпистемологические и методологические воззрения великого физика. Среди них… … Энциклопедия эпистемологии и философии науки

    - (РТГ) теория гравитации, основанная на представлении гравитационного поля как симметричного тензорного физического поля валентности 2 в пространстве Минковского. Разрабатывается академиком РАН А. А. Логуновым с группой… … Википедия

    - (греч. τὰ φυσικά – наука о природе, от φύσις – природа) – комплекс науч. дисциплин, изучающих общие свойства структуры, взаимодействия и движения материи. В соответствии с этими задачами совр. Ф. весьма условно можно подразделить на три больших… … Философская энциклопедия

    Физика гиперядер раздел физики на стыке ядерной физики и физики элементарных частиц, в котором предметом исследования выступают ядроподобные системы, содержащие кроме протонов и нейтронов другие элементарные частицы гипероны. Также… … Википедия

    Раздел физики, изучающий динамику частиц в ускорителях, а также многочисленные технические задачи, связанные с сооружением и эксплуатацией ускорителей частиц. Физика ускорителей включает в себя вопросы, связанные с получением и накоплением частиц … Википедия

    ФИЗИКА. 1. Предмет и структура физики Ф. наука, изучающая простейшие и вместе с тем наиб. общие свойства и законы движения окружающих нас объектов материального мира. Вследствие этой общности не существует явлений природы, не имеющих физ. свойств … Физическая энциклопедия

    Релятивистская механика раздел физики, рассматривающий законы механики (законы движения тел и частиц) при скоростях, сравнимых со скоростью света. При скоростях значительно меньших скорости света переходит в классическую (ньютоновскую)… … Википедия

    Раздел физики, посвящённый изучению ядерных процессов, в к рых частицы, составляющие ядерную материю, движутся со скоростями, близкими к скорости света с. Р. я. ф. сформировалась в 1970 72 в связи с экспериментами на пучках релятивистских ядер,… … Физическая энциклопедия

    I. Предмет и структура физики Ф. – наука, изучающая простейшие и вместе с тем наиболее общие закономерности явлений природы, свойства и строение материи и законы её движения. Поэтому понятия Ф. и сё законы лежат в основе всего… … Большая советская энциклопедия

    Примеры разнообразных физических явлений Физика (от др. греч. φύσις … Википедия

Книги

  • Физика сильноточных релятивистских электронных пучков , А. А. Рухадзе, Л. С. Богданкевич, С. Е. Росинский, В. Г. Рухлин. Систематически излагаются основы физики импульсных сильноточных электронных пучков и их взаимодействия с плазмой. Подробно рассмотрены различные равновесные конфигурации, формирование и…

Специальная теория относительности (СТО) рассматривает взаимосвязь физических процессов только в инерциальных системах отсчёта (СО), то есть в СО, которые движутся относительно друг друга равномерно прямолинейно.

Общая теория относительности (ОТО) рассматривает взаимосвязь физических процессов в неинерциальных СО, то есть в СО, которые ускоренно движутся относительно друг друга.

Пространство
характеризует взаимное расположение тел;
пространство однородно, имеет три измерения;
все направления в пространстве равноправны.

Время
характеризует последовательность событий;
время имеет одно измерение;
время однородно и изотропно.

Постулаты теории относительности:

1. Во всех инерциальных СО все физические явления происходят одинаково.

Т.е. все инерциальные СО равноправны . Никакие опыты в любой области физики не позволяют выделить абсолютную инерциальную СО.

2. Скорость света в вакууме одинакова во всех инерциальных СО и не зависит от скорости источника света и наблюдателя (т.е. скорость света в вакууме инвариантна ).

Скорость распространения света в вакууме является максимально возможной скоростью распространения или передачи любого взаимодействия:
с = 299792,5 км/с.

Относительность одновременности

Событие – это любое явление, происходящее в данной точке пространства в некоторый момент времени.
Задать событие означает задать точку в четырёхмерном пространстве «координаты – время», т.е. когда и где событие происходит.

В классической механике Ньютона время одинаково в любой инерциальной СО, то есть имеет абсолютное значение и не зависит от выбора СО .

В релятивистской механике время зависит от выбора СО .

События, происходящие одновременно в одной СО, могут не быть одновременными в другой СО, движущейся относительно первой.

Относительно двух часов, один из которых расположен на носу, а другой на корме корабля, событие (вспышка) происходит не одновременно. Часы А и Б синхронизированы и находятся на одинаковом расстоянии от источника света, расположенного между ними. Свет распространяется с одинаковой скоростью во всех направлениях, но часы фиксируют вспышку в разные моменты времени.

Пусть один наблюдатель находится внутри корабля (внутренний наблюдатель) в системе отсчёта К’, а второй вне корабля (внешний наблюдатель) в системе отсчёта К.
Система отсчёта К’ связана с кораблём и движется со скоростью v относительно неподвижной системы отсчёта К , которая связана с внешнем наблюдателем .

Если посередине корабля, который движется с некоторой скоростью v относительно внешнего наблюдателя, вспыхнет источник света, то для внутреннего наблюдателя свет достигает кормы и носа корабля одновременно . Т.е. в системе отсчёта К’ эти два события происходят одновременно.

Для внешнего наблюдателя корма будет «приближаться» к источнику света, а нос корабля — удаляться, и свет достигнет кормы раньше, чем носа корабля . Т.е. в системе отсчёта К эти два события происходят не одновременно.

Релятивистский закон сложения скоростей

Классический закон сложения скоростей в релятивистской механике применять нельзя (это противоречит второму постулату СТО), поэтому в СТО применяют релятивистский закон сложения скоростей.

Очевидно, что при скоростях, которые много меньше скорости света, релятивистский закон сложения скоростей принимает вид классического закона сложения скоростей.

Следствия постулатов теории относительности

1. Промежутки времени увеличиваются, время замедляется.

Замедление времени экспериментально показано при радиоактивном распаде ядер: радиоактивный распад ускоренных ядер замедлен по сравнению с радиоактивным распадом таких же покоящихся ядер.

2. Размеры тел уменьшаются в направлении движения.

Из формулы видно, что самую большую длину тело имеет в неподвижной СО. Изменение длины тела во время движения называется лоренцово сокращение длины .

Как связаны масса и энергия

В литературе знаменитую формулу Эйнштейна пишут в 4-х вариантах, что свидетельствует о не очень её глубоком понимании.

Оригинальная формула появилась в небольшой заметке Эйнштейна в 1905 году:

Эта формула имеет глубокий физический смысл. Она говорит о том, что масса тела, которое находится в состоянии покоя как целое, определяет содержание энергии в нём, независимо от природы этой энергии.

Например , внутренняя кинетическая энергия хаотического движения частиц, из которых состоит тело, входит в энергию покоя тела, в отличие от кинетической энергии поступательного движения. То есть, нагревая тело, мы увеличиваем его массу.
Также следует обратить внимание на то, что формула читается справа налево любая масса определяет энергию тела. Но не всякая энергия может быть поставлена в соответствие с какой-нибудь массой.

Также из формулы следует, что

изменение энергии тела прямо пропорционально изменению его массы:

В случае, когда тело начинает двигаться, энергия покоя переходит в полную энергию в СО, которая движется поступательно как целое с определённой скоростью v .

Релятивистская механика – это механика, в которую превращается механика Ньютона в случае если тело движется со скоростью, близкой к скорости света. На таких высоких скоростях с вещами начинают происходить ну просто волшебные и совершенно неожиданные вещи, такие как, например, релятивистское сокращение длины или замедление времени.

Но как именно классическая механика становится релятивистской? Обо всем по порядку в нашей новой статье.

Начнем с самого начала...

Принцип относительности Галилея

Принцип относительности Галилея (1564-1642) гласит:

В инерциальных системах отсчета все процессы протекают одинаково, если система неподвижна или движется равномерно и прямолинейно.

В данном случае речь идет исключительно о механических процессах. Что это значит? Это значит, что если мы, например, будем плыть на равномерно и прямолинейно движущемся пароме через туман, мы не сможем определить, движется паром или покоится. Иными словами, если провести эксперимент в двух одинаковых замкнутых лабораториях, одна из которых равномерно и прямолинейно движется относительно другой, результат эксперимента будет одинаковым.


Преобразования Галилея

Преобразования Галилея в классической механике – это преобразования координат и скорости при переходе от одной инерциальной системы отсчета к другой. Не будем приводить здесь всех вычислений и выводов, а просто запишем формулу для преобразования скорости. Согласно этой формуле скорость тела относительно неподвижной системы отсчета равна векторной сумме скорости тела в движущейся системе отсчета и скорости движущейся системы отсчета относительно неподвижной.

Приведенный нами выше принцип относительности Галилея является частным случаем принципа относительности Эйнштейна.

Принцип относительности Эйнштейна и постулаты СТО

В начале двадцатого века после более чем двухсотлетнего господства классической механики возник вопрос о распространении принципа относительности на немеханические явления. Причиной возникновения такого вопроса стало закономерное развитие физики, в частности оптики и электродинамики. Результаты многочисленных экспериментов то подтверждали справедливость формулировки принципа относительности Галилея для всех физических явлений, то в ряде случаев указывали на ошибочность преобразований Галилея.


Например, проверка формулы сложения скоростей показала ее ошибочность при скоростях, близких к скорости света. Более того, опыт Физо в 1881 году показал, что скорость света не зависит от скорости движения источника и наблюдателя, т.е. в любой системе отсчета остается постоянной. Данный результат эксперимента никак не укладывался в рамки классической механики.

Решение этой и других проблем нашел Альберт Эйнштейн. Для того чтобы теория сошлась с практикой, Эйнштейну пришлось отказаться от нескольких, казалось бы, очевидных истин классической механики. А именно - предположить, что расстояния и промежутки времени в различных системах отсчета не неизменны . Ниже приведем основные постулаты Специальной Теории Относительности (СТО) Эйнштейна:

Первый постулат: во всех инерциальных системах отсчета все физические явления протекают одинаково. При переходе от одной системы к другой все законы природы и явления, описывающие их, инвариантны, то есть никакими опытами нельзя отдать предпочтение одной из систем, ибо они инвариантны.

Второй постулат: с корость света в вакууме одинакова во всех направлениях и не зависит от источника и наблюдателя, т.е. не изменяется при переходе от одной инерциальной системы к другой.

Скорость света – предельная скорость. Никакой сигнал или действие не могут распространяться со скоростью, превышающей скорость света.

Преобразования координат и времени при переходе от неподвижной системы отсчета к системе, движущейся со скоростью света, называются преобразованиями Лоренца. К примеру, пусть одна система покоится, а вторая движется вдоль оси абсцисс.

Как видим, время также изменяется наряду с координатами, то есть выступает как бы в роли четвертной координаты. Преобразования Лоренца показывают, что в СТО пространство и время неразделимы в отличие от классической механики.

Помните парадокс двух близнецов, один из которых ждал на земле, а второй летел на космическом корабле с очень большой скоростью? После того как брат-космонавт вернулся на землю, он застал своего брата стариком, хотя сам был практически так же молод, как в момент начала путешествия. Типичный пример того, как изменяется время в зависимости от системы отсчета.


При скоростях же много меньших скорости света преобразования Лоренца переходят в преобразования Галилея. Даже при скорости современных реактивных самолетов и ракет отклонения от законов классической механики настолько малы, что их практически невозможно измерить.

Механика, учитывающая преобразования Лоренца, и называется релятивистской.

В рамках релятивистской механики меняются формулировки некоторых физических величин. Например, импульс тела в релятивистской механике в соответствии с преобразованиями Лоренца может быть записан так:

Соответственно, второй закон Ньютона в релятивистской механике будет иметь вид:

А полная релятивистская энергия тела в релятивистской механике равна

Если тело покоится и скорость равна нулю, данная формула преобразуется в знаменитую


Данная формула, которую, кажется, знают все, показывает, что масса является мерой полной энергии тела, а также иллюстрирует принципиальную возможность перехода энергии вещества в энергию излучения.

Дорогие друзья, на этой торжественной ноте мы закончим наш сегодняшний обзор релятивистской механики. Мы рассмотрели принцип относительности Галилея и Эйнштейна, а также некоторые основные формулы релятивистской механики. Самым стойким и дочитавшим статью до конца напоминаем – в мире нет «нерешабельных» задач и проблем, которые невозможно решить. Паниковать и переживать из-за незаконченной курсовой нет никакого смысла. Просто вспомните о масштабах Вселенной, вздохните полной грудью и поручите выполнение настоящим профессионалам своего дела –

Употребляемый в физике для явлений, обусловленных движением со скоростями, близкими к скорости света, либо сильными полями тяготения. Такие явления описываются относительности теорией.

Современная энциклопедия . 2000 .

Синонимы :

Смотреть что такое "РЕЛЯТИВИСТСКИЙ" в других словарях:

    Релятивистический Словарь русских синонимов. релятивистский прил., кол во синонимов: 1 релятивистический (1) Словарь синон … Словарь синонимов

    РЕЛЯТИВИСТСКИЙ, релятивистская, релятивистское (филос., научн.). прил. к релятивист. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    РЕЛЯТИВИЗМ, а, м. В философии: методологическая позиция, сторонники к рой, абсолютизируя относительность и условность всех наших знаний, считают невозможным объективное познание действительности. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю.… … Толковый словарь Ожегова

    Прил. 1. соотн. с сущ. релятивизм, релятивист, связанный с ними 2. Характеризующийся релятивизмом, связанный с теорией относительности А. Эйнштейна. Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой

    Релятивистский, релятивистская, релятивистское, релятивистские, релятивистского, релятивистской, релятивистского, релятивистских, релятивистскому, релятивистской, релятивистскому, релятивистским, релятивистский, релятивистскую, релятивистское,… … Формы слов

    - (лат. relativus относительный) физ. термин, относящийся к явлениям, рассматриваемым на основе спец. (частной) теории относительности (теории движения тел со скоростями, близкими к скорости света) или на основе общей теории относительности (теории … Словарь иностранных слов русского языка

    релятивистский - релятив истский … Русский орфографический словарь

    релятивистский - … Орфографический словарь русского языка

    Ая, ое. 1. к Релятивизм и Релятивист. Р ие взгляды, убеждения. Р ая теория познания. 2. Физ. Относящийся к явлениям, рассматриваемым на основе теории относительности. Р ая частица. Р ая скорость (близкая к скорости света) … Энциклопедический словарь

    релятивистский - ая, ое. 1) к релятивизм и релятивист. Р ие взгляды, убеждения. Р ая теория познания. 2) физ. Относящийся к явлениям, рассматриваемым на основе теории относительности. Р ая частица. Р ая скорость (близкая к скорости света) … Словарь многих выражений

Книги

  • Структура пространства-времени , Р. Пенроуз. Имя автора хорошо знакомо физикам-теоретикам и космологам. Именно Пенроузу принадлежит доказательство важной теоремы о неизбежности возникновения физической сингулярности пространства-времени…

Физика и редукционизм. Физика и наглядность. Теория относительности.

Физика и редукционизм

В этой теме мы дадим как бы моментальную фотографию современного строения мира. Поможет нам одна из наиболее древних и фундаментальных наук - физика. Физика - главная из естественных наук, поскольку в буквальном переводе с греческого слово «фюзис» означает «природа». Стало быть, физика - наука о природе. Физика всегда считалась эталоном научного знания. В каком смысле? Не в том, что она дает наиболее важное и истинное знание, а в том, что открывает истины, справедливые для всей Вселенной, о соотношении нескольких основных переменных. Ее универсальность обратно пропорциональна количеству переменных, которые она вводит в свои формулы.

Как атомы и кварки - «кирпичики» мироздания, так законы физики - «кирпичики» познания. «Кирпичиками» познания законы физики являются не только потому, что в них используются некоторые основные и универсальные переменные и постоянные, действующие во всей Вселенной, но также и потому, что в науке действует принцип редукционизма, гласящий, что все более сложные законы развития более сложных уровней реальности должны быть сводимы к законам более простых уровней.

Скажем, законы воспроизводства жизни в генетике раскрываются на молекулярном уровне как законы взаимодействия молекул ДНК и РНК. Согласованием законов различных областей материального мира занимаются специальные пограничные науки, такие, как молекулярная биология, биофизика, биохимия, геофизика, геохимия и т. д. Очень часто новые науки образуются как раз на стыках более древних дисциплин.

Относительно сферы применимости принципа редукционизма в методологии науки ведутся ожесточенные споры, но само объяснение как таковое всегда предполагает сведения объясняемого на более низкий понятийный уровень. В этом смысле наука просто подтверждает свою рациональность.



Физики утверждают, что ни одно тело во Вселенной не может не подчиняться закону всемирного тяготения, а если его поведение противоречит данному закону, значит вмешиваются другие закономерности. Самолет не падает на землю благодаря своей конструкции и двигателю. Космический корабль преодолевает земное тяготение за счет реактивного топлива и т. п. Ни самолет, ни космический корабль не отрицают закон всемирного тяготения, а используют факторы, которые нейтрализуют его действие.

Можно отрицать законы философии, религию, мистические чудеса, и это признается нормальным. Но с подозрением смотрят на человека, который отрицает законы науки, скажем, закон всемирного тяготения. В этом смысле можно сказать, что законы физики лежат в основании научного постижения действительности.

Физика и наглядность

Два обстоятельства мешают понять современную физику. Во-первых, применение сложнейшего математического аппарата, который надо предварительно изучить. А. Эйнштейн сделал удачную попытку преодолеть эту трудность, написав учебник, в котором нет ни одной формулы. Но есть другое обстоятельство, которое оказывается непреодолимым - невозможность создать наглядную модель современных физических представлений: искривленное пространство; частицу, одновременно являющуюся волной и т. д. Выход из ситуации прост - не надо и пытаться это сделать.

Прогресс физики (и науки в целом) связан с постепенным отказом от непосредственной наглядности. Как будто такой вывод должен противоречить тому, что современная наука и физика прежде всего основывается на эксперименте, т. е. эмпирическом опыте, который проходит при контролируемых человеком условиях и может быть воспроизведен в любое время любое число раз. Но все дело в том, что некоторые стороны реальности незаметны для поверхностного наблюдения и наглядность может ввести в заблуждение. Механика Аристотеля покоилась на принципе: «Движущееся тело останавливается, если сила, его толкающая, прекращает свое действие». Он оказался соответствующим реальности просто потому, что не замечалось, что причиной остановки тела является трение. Для того, чтобы сделать правильный вывод, потребовался эксперимент, который был не реальным экспериментом, невозможным в данном случае, а экспериментом идеальным.

Такой эксперимент провел великий итальянский ученый Галилео Галилей, автор «Диалога о двух главнейших системах мира, птолемеевой и коперниковой» (1632 г.). Для того, чтобы данный мысленный эксперимент стал возможным потребовалось представление об идеально гладком теле и идеально гладкой поверхности, исключающей трение. Эксперимент Галилея, позволивший сделать вывод, что если ничто не будет влиять на движение тела, оно сможет продолжаться бесконечно долго, стал основой классической механики Ньютона (вспомним три закона движения из школьной программы физики). В 1686 году Исаак Ньютон предоставил Лондонскому королевскому обществу свои «Математические начала натуральной философии», в которых сформулировал основные законы движения, закон всемирного тяготения, понятия массы, инерции, ускорения. Так благодаря мысленным экспериментам стала возможной новая механистическая картина мира.

Возможно на знаменитые мысленные эксперименты Галилея подвигло создание гелиоцентрической системы мира выдающимся польским ученым Николаем Коперником (1473-1543), ставшее еще одним примером отказа от непосредственной наглядности. Главный труд Коперника «Об обращении небесных миров» подвел итог его наблюдениям и размышлениям над этими вопросами в течение более 30 лет. Датский астроном Тихо Браге (1546-1601) ради спасения наглядности выдвинул в 1588 году гипотезу, согласно которой вокруг Солнца вращаются все планеты за исключением Земли, последняя неподвижна и вокруг нее обращаются Солнце с планетами и Луна. И только Иоганн Кеплер (1571-1630), установив три закона планетарных движений, носящих его имя (первые два - в 1609, третий-в 1618 г.) окончательно подтвердил справедливость учения Коперника.

Итак, прогресс науки Нового времени определили идеализированные представления, порывающие с непосредственной реальностью. Однако, физика XX века заставляет нас отказаться не только от непосредственной наглядности, но и от наглядности как таковой. Это препятствует представлению физической реальности, но позволяет лучше осознать справедливость слов Эйнштейна, что «физические понятия суть свободные творения человеческого разума и не однозначно определены внешним миром» (Эйнштейн А., Инфельд Л. Эволюция физики. - С. 30). «В нашем стремлении понять реальность мы отчасти подобны человеку, который хочет понять механизм закрытых часов. Он видит циферблат и движущиеся стрелки, даже слышит тиканье, но не имеет средств открыть их корпус. Если он остроумен, он может нарисовать себе некую картину механизма, которая отвечала бы всему, что он наблюдает, но он никогда не может быть вполне уверен в том, что его картина единственная, которая могла бы объяснить его наблюдения» (Там же. - С. 30).

Отказ от наглядности научных представлений является неизбежной платой за переход к исследованию более глубоких уровней реальности, не соответствующих эволюционно выработанным механизмам человеческого восприятия.

Теория относительности

Еще в классической механике был известен принцип относительности Галилея: «Если законы механики справедливы в одной системе координат, то они справедливы и в любой другой системе, движущейся прямолинейно и равномерно относительно первой» (Эйнштейн А., Инфельд Л. Эволюция физики.- С. 130). Такие системы называются инерциальными, поскольку движение в них подчиняется закону инерции, гласящему: «Всякое тело сохраняет состояние покоя или равномерного прямолинейного движения, если только оно не вынуждено изменить его под влиянием движущих сил» (Там же. - С. 126).

В начале XX века выяснилось, что принцип относительности справедлив также в оптике и электродинамике, т. е. в других разделах физики. Принцип относительности расширил свое значение и теперь звучал так: любой процесс протекает одинаково в изолированной материальной системе, и в такой же системе, находящейся в состоянии равномерного прямолинейного движения. Или: законы физики имеют одинаковую форму во всех инерциальных системах отсчета.

После того, как физики отказались от представления о существовании эфира как всеобщей среды, рухнуло и представление об эталонной системе отсчета. Все системы отсчета были признаны равнозначными, и принцип относительности стал универсальным. Относительность в теории относительности означает, что все системы отсчета одинаковы и нет какой-либо одной, имеющей преимущества перед другими (относительно которой эфир был бы неподвижен).

Переход от одной инерциальной системы к другой осуществлялся в соответствии с преобразованиями Лоренца. Однако экспериментальные данные о постоянстве скорости света привели к парадоксу, для разрешения которого понадобилось введение принципиально новых представлений.

Пояснить сказанное поможет следующий пример. Предположим, что мы плывем на корабле, движущемся прямолинейно и равномерно относительно берега. Все законы движения остаются здесь такими же, как на берегу. Общая скорость движения будет определяться суммой движения на корабле и движения самого корабля. При скоростях, далеких от скорости света, это не приводит к отклонению от законов классической механики. Но если наш корабль достигнет скорости, близкой к скорости света, то сумма скорости движения корабля и на корабле может превысить скорость света, чего на самом деле не может быть, так как в соответствии с экспериментом Майкельсона - Морли «скорость света всегда одинакова во всех системах координат, независимо от того, движется ли излучающий источник или нет, и независимо от того, как он движется» (Эйнштейн А., Инфельд Л. Цит. соч.- С. 140).

Пытаясь преодолеть возникшие трудности, в 1904 году X. Лоренц предложил считать, что движущиеся тела сокращаются в направлении своего движения (причем коэффициент сокращения зависит от скорости тела) и что в различных системах отсчета измеряются кажущиеся промежутки времени. Но в следующем году А. Эйнштейн истолковал кажущееся время в преобразованиях Лоренца как истинное.

Как и Галилей, Эйнштейн использовал мысленный эксперимент, который получил название «поезд Эйнштейна». «Представим себе наблюдателя, едущего в поезде и измеряющего скорость света, испускаемого фонарями на обочине дороги, т. е. движущегося со скоростью С в системе отсчета, относительно которой поезд движется со скоростью V. По классической теореме сложения скоростей наблюдатель, едущий в поезде, должен был бы приписать свету, распространяющемуся в направлении движения поезда, скорость С - V.» (Пригожий И., Стенгерс И. Порядок из хаоса.- С. 87). Однако скорость света выступает как универсальная постоянная природы.

Рассматривая это противоречие, Эйнштейн предложил отказаться от представления об абсолютности и неизменности свойств пространства и времени. Данный вывод противоречит здравому смыслу и тому, что Кант называл условиями созерцания, поскольку мы не можем представить никакого пространства, кроме трехмерного, и никакого времени, кроме одномерного. Но наука совсем не обязательно должна следовать здравому смыслу и неизменным формам чувственности. Главный критерий для нее - соответствие теории и эксперимента. Теория Эйнштейна удовлетворяла этому критерию и была принята. В свое время и представления о том, что Земля круглая и движется вокруг Солнца тоже казались противоречащими здравому смыслу и наблюдению, но именно они оказались справедливыми.

Пространство и время традиционно рассматривались в философии и науке как основные формы существования материи, ответственные за расположение отдельных элементов материи друг относительно друга и за закономерную координацию сменяющих друг друга явлений. Характеристиками пространства считались однородность - одинаковость свойств во всех направлениях, и изотропность - независимость свойств от направления. Время также считалось однородным, т. е. любой процесс в принципе повторим через некоторый промежуток времени. С этими свойствами связана симметрия мира, которая имеет большое значение для его познания. Пространство рассматривалось как трехмерное, а время как одномерное и идущее в одном направлении - от прошлого к будущему. Время необратимо, но во всех физических законах от перемены знака времени на противоположный ничего не меняется и стало быть физически будущее неотличимо от прошедшего.

В истории науки известны две концепции пространства: пространство неизменное как вместилище материи (взгляд Ньютона) и пространство, свойства которого связаны со свойствами тел, находящихся в нем (взгляд Лейбница). В соответствии с теорией относительности любое тело определяет геометрию пространства.

Из специальной теории относительности следует, что длина тела (вообще расстояние между двумя материальными точками) и длительность (а также ритм) происходящих в нем процессов являются не абсолютными, а относительными величинами. При приближении к скорости света все процессы в системе замедляются, продольные (вдоль движения) размеры тела сокращаются и события, одновременные для одного наблюдателя, оказываются разновременными для другого, движущегося относительно него. «Стержень сократится до нуля, если его скорость достигнет скорости света... часы совершенно остановились бы, если бы они могли двигаться со скоростью света» (Эйнштейн А., Инфельд Л. Цит. соч.- С. 158).

Экспериментально подтверждено, что частица (например, нуклон) может проявлять себя по отношению к медленно движущейся относительно нее частице как сферическая, а по отношению к налетающей на нее с очень большой скоростью частице - как сплющенный в направлении движения диск. Соответственно, время жизни медленно движущегося заряженного пи-мезона составляет примерно 10~ 8 сек, а быстро движущегося (с околосветовой скоростью) - во много раз больше. Итак, пространство и время-общие формы координации материальных явлений, а не самостоятельно существующие независимо от материи начала бытия.

Найденное Эйнштейном объединение принципа относительности Галилея с относительностью одновременности получило название принципа относительности Эйнштейна. Понятие относительности стало одним из основных в современном естествознании.

В специальной теории относительности свойства пространства и времени рассматриваются без учета гравитационных полей, которые не являются инерциальными. Общая теория относительности распространяет законы природы на все, в том числе на не-инерциальные системы. Общая теория относительности связала тяготение с электромагнетизмом и механикой. Она заменила ньютонов механистический закон всемирного тяготения на полевой закон тяготения. «Схематически мы можем сказать: переход от ньютонова закона тяготения в общей относительности до некоторой степени аналогичен переходу от теории электрических жидкостей и закона Кулона к теории Максвелла» (Эйнштейн А., Инфельд Л. Цит. соч.- С. 196). И здесь физика перешла от вещественной к полевой теории.

Три века физика была механистической и имела дело только с веществом. Но «уравнения Максвелла описывают структуру электромагнитного поля. Ареной этих законов является все пространство, а не одни только точки, в которых находится вещество или заряды, как это имеет место для механических законов» (Там же.- С. 120). Представление о поле победило механицизм.

Уравнения Максвелла «не связывают, как это имеет место в законах Ньютона, два широко разделенных события, они не связывают события здесь с условиями там. Поле здесь и теперь зависит от поля в непосредственном соседстве в момент только что протекший» (Там же.- С. 120). Это существенно новый момент полевой картины мира. Электромагнитные волны распространяются со скоростью света в пространстве и аналогичным образом действует гравитационное поле.

Массы, создающие поле тяготения, по общей теории относительности, искривляют пространство и меняют течение времени. Чем сильнее поле, тем медленнее течет время по сравнению с течением времени вне поля. Тяготение зависит не только от распределения масс в пространстве, но и от их движения, от давления и натяжений, имеющихся в телах, от электромагнитного и всех других физических полей. Изменения гравитационного поля распределяются в вакууме со скоростью света. В теории Эйнштейна материя влияет на свойства пространства и времени.

При переходе к космическим масштабам геометрия пространства перестает быть евклидовой и изменяется от одной области к другой в зависимости от плотности масс в этих областях и их движения. В масштабах метагалактики геометрия пространства изменяется со временем вследствие расширения метагалактики. При скоростях, приближающихся к скорости света, при сильном поле пространство приходит в сингулярное состояние, т. е. сжимается в точку. Через это сжатие мегамир приходит во взаимодействие с микромиром и во многом оказывается аналогичным ему. Классическая механика остается справедливой как предельный случай при скоростях, намного меньших скорости света, и массах, намного меньших масс в мегамире.

Теория относительности показала единство пространства и времени, выражающееся в совместном изменении их характеристик в зависимости от концентрации масс и их движения. Время и пространство перестали рассматриваться независимо друг от друга и возникло представление о пространственно-временном четырехмерном континууме.

Теория относительности связала также массу и энергию соотношением Е=МС 2 , где С - скорость света. В теории относительности «два закона - закон сохранения массы и сохранения энергии - потеряли свою независимую друг от друга справедливость и оказались объединенными в единый закон, который можно назвать законом сохранения энергии или массы» (Гейзенберг В. Физика и философия. Часть и целое.- М., 1989.- С. 69). Явление аннигиляции, при котором частица и античастица взаимно уничтожают друг друга, и другие явления физики микромира подтверждают данный вывод.

Итак, теория относительности основывается на постулатах постоянства скорости света и одинаковости законов природы во всех физических системах, а основные результаты, к которым она приходит таковы: относительность свойств пространства-времени; относительность массы и энергии; эквивалентность тяжелой и инертной масс (следствие отмеченного еще Галилеем, что все тела, независимо от их состава и массы падают в поле тяготения с одним и тем же ускорением).

До XX века были открыты законы функционирования вещества (Ньютон) и поля (Максвелл). В XX веке неоднократно предпринимались попытки создать единую теорию поля, в которой соединились бы вещественные и полевые представления, которые, однако, оказались безуспешными.

В 1967 году была выдвинута гипотеза о наличии тахионов-частиц, которые двигаются со скоростью, большей скорости света. Если эта гипотеза когда-нибудь подтвердится, то возможно, что из очень неуютного для обычного человека мира относительности, в котором постоянна только скорость света, мы снова вернемся в более привычный мир, в котором абсолютное пространство напоминает надежный дом со стенами и крышей. Но пока это только мечты, о реальной осуществимости которых можно будет говорить наверное только в III тысячелетии.

В заключении данного раздела приведем слова из книги Гейзенберга «Часть и целое» о том, что же означает понимание как таковое. «Понимать» - это, по-видимому, означает овладеть представлениями, концепциями, с помощью которых мы можем рассматривать огромное множество различных явлений в их целостной связи, иными словами, «охватить» их. Наша мысль успокаивается, когда мы узнаем, что какая-нибудь конкретная, кажущаяся запутанной ситуация есть лишь частное следствие чего-то более общего, поддающегося тем самым более простой формулировке. Сведение пестрого многообразия явлений к общему и простому первопринципу или, как сказали бы греки, «многого» к «единому», и есть как раз то самое, что мы называем «пониманием». Способность численно предсказать событие часто является следствием понимания, обладания правильными понятиями, но она непосредственно не тождественна пониманию» (Гейзенберг В. Физика и философия. Часть и целое.- М., 1989. - С. 165).