Петлевая квантовая космология. Физические вопросы, на которые должна отвечать теория струн и петлевая квантовая гравитация Петлевая гравитация

  • Перевод

Два кандидата на «теорию всего», долгое время считавшиеся несовместимыми, могут оказаться двумя сторонами одной медали.

Восемьдесят лет прошло с тех пор, как физики поняли, что теории квантовой механики и гравитации несовместимы, и загадка их комбинирования остаётся неразрешённой. За последние десятилетия исследователи изучали эту задачу двумя разными путями – через теорию струн и через квантовую гравитацию – которые практикующие их учёные считают несовместимыми. Но некоторые учёные доказывают, что для продвижения необходимо объединить усилия.

Среди попыток объединения квантовой теории и гравитации больше всего внимания привлекла теория струн . Её предпосылка проста: всё состоит из маленьких струн. Струны могут быть замкнуты или разомкнуты; они могут вибрировать, растягиваться, объединяться или распадаться. И в этом многообразии лежат объяснения всех наблюдаемых явлений, включая материю и пространство-время.

Петлевая квантовая гравитация (ПКГ), наоборот, придаёт меньше значения материи, присутствующей в пространстве-времени, и больше концентрируется на свойствах самого пространства-времени. В теории ПКГ пространство-время – это сеть. Плавный фон теории гравитации Эйнштейна заменяется узлами и звеньями, которым назначаются квантовые свойства. Таким образом, пространство состоит из отдельных кусочков. ПКГ в основном занимается изучением этих кусочков.

Этот подход долгое время считался несовместимым с теорией струн. В самом деле, их различия очевидны и глубоки. Для начала, ПКГ изучает кусочки пространства-времени, а теория струн исследует поведения объектов в пространстве-времени. Эти области разделяют и технические проблемы. Теории струн необходимо, чтобы в пространстве было 10 измерений; ПКГ в высших измерениях не работает. Теория струн предполагает наличие суперсимметрии, в которой у всех частиц есть пока не обнаруженные партнёры. Суперсимметрия не свойственна ПКГ.

Эти и другие различия разбили сообщество физиков-теоретиков на два лагеря. «Конференции разделяются, - говорит Дордж Пуллин , физик из Университета штата Луизиана и соавтор учебника по ПКГ . – Петлевики ездят на петлевые конфы, струнники – на струнные. Они теперь даже не ездят на конференции по „физике“. Я думаю, что это весьма прискорбно».

Но некоторые факторы могут сдвинуть эти лагеря поближе. Новые теоретические открытия выявили возможные сходства между ПКГ и теорией струн. Новое поколение струнных теоретиков вышло за пределы струнной теории и начало поиски методов и инструментов, могущих оказаться полезными для создания «теории всего». И недавний парадокс с потерей информации в чёрных дырах заставил всех почувствовать себя скромнее.

Более того, в отсутствие экспериментальных подтверждений струнной теории или ПКГ, математическое доказательство того, что они являются двумя сторонами одной монеты, послужило бы доводом в пользу того, что физики в поисках «теории всего» движутся в верном направлении. Комбинация ПКГ и струнной теории сделала бы новую теорию единственной .

Неожиданная связь

Попытки решить некоторые проблемы ПКГ привели к первой неожиданной связи с теорией струн. У изучающих ПКГ физиков нет чёткого понимания того, как перейти от кусочков сети пространства-времени к крупномасштабному описанию пространства-времени, совпадающему с ОТО Эйнштейна – нашей лучшей теорией гравитации. Более того, их теория не может примириться с тем особым случаем, в котором гравитацией можно пренебречь. Это проблема, подстерегающая любую попытку использования пространства-времени по кусочкам: в СТО линейные размеры объекта уменьшаются в зависимости от движения наблюдателя относительно объекта. Сжатие также влияет и на размер кусочков пространства-времени, которые воспринимаются по-разному наблюдателями, движущимися на разных скоростях. Это расхождение приводит к проблемам с центральным принципом теории Эйнштейна – что законы физики не зависят от скорости наблюдателя.

«Сложно вводить дискретные структуры, не испытывая проблем с СТО»,- говорит Пуллин. В своей работе, написанной в 2014 году с коллегой Рудольфо Гамбини, физиком из Республиканского университета Уругвая в Монтевидео, Пуллин пишет, что приведение ПКГ в соответствие с СТО неизбежно влечёт за собой появление взаимодействий, похожих на присутствующие в теории струн.

То, что у этих двух подходов есть что-то общее, казалось Пуллину вероятным со времён плодотворного открытия, сделанного в конце 1990-з Хуаном Малцаденой , физиком из Института перспективных исследований в Принстоне, штат Нью-Джерси. Малцадена в антидеситтеровском пространстве-времени (AdS) привёл в соответствие теорию гравитации и конформную теорию поля (CFT) на границе пространства-времени. Используя подход AdS/CFT, теорию гравитации можно описать при помощи более понятной теории поля.

Полная версия дуализма пока является гипотезой, но у неё есть хорошо разобранный ограничивающий случай, к которому не имеет отношения теория струн. Из-за того, что струны в этом случае не играют роли, его можно использовать в любой теории квантовой гравитации. Пуллину видится здесь точка соприкосновения.


ПКГ в представлении художника

Герман Верлинде , физик-теоретик из Принстонского университета, частенько работающий с теорией струн, считает правдоподобным то, что методы ПКГ могут пролить свет на гравитационную сторону дуализма. В недавней работе он описал упрощённую модель AdS/CFT в двух измерениях для пространства и одного для времени, или, как говорят физики, в случае «2+1». Он обнаружил, что пространство AdS можно описать при помощи таких сетей, что используются в ПКГ. Несмотря на то, что вся конструкция пока работает в «2+1», она предлагает новый взгляд на гравитацию. Верлинде надеется обобщить модель для большего количества измерений. «На ПКГ смотрели слишком узко. Мой подход включает и другие области. В интеллектуальном смысле это взгляд в будущее»,- сказал он.

Но даже если удастся скомбинировать методы ПКГ и струнной теории, чтобы продвинуться вперёд с пространством AdS, останется вопрос: насколько такая комбинация окажется полезной? У пространства AdS космологическая константа отрицательная (это число описывает геометрию Вселенной на больших масштабах), а у нашей Вселенной – положительная. Мы не живём в математической конструкции, описываемой пространством AdS.

Подход Верлинде прагматичен. «Например, для положительной космологической константы нам может понадобиться новая теория. Тогда вопрос в том, насколько она будет отличаться от этой. AdS пока – наилучший намёк на искомую структуру, и нам нужно совершить какой-то трюк, чтобы прийти к положительной константе». Он считает, что учёные не теряют время с этой теорией зря: «Хотя AdS и не описывает наш мир, она даст нам уроки, которые поведут нас в нужном направлении».

Объединение на территории чёрной дыры

Верлинде и Пуллин указывают на ещё одну возможность объединения сообществ струнной теории и ПКГ: загадочная судьба информации, попадающей в чёрную дыру . В 2012 году четверо исследователей из Калифорнийского университета обратили внимание на противоречие в господствующей теории. Они утверждали, что если чёрная дыра позволит информации убегать из неё, это уничтожит тонкую структуру пустого пространства вокруг горизонта чёрной дыры, и создаст высокоэнергетический барьер – «файервол». Но такой барьер несовместим с принципом эквивалентности, лежащим в основе ОТО, утверждающим, что наблюдатель не может сказать, пересёк ли он горизонт. Эта несовместимость внесла возмущение в ряды струнных теоретиков, считавших, что понимают связь чёрных дыр с информацией, и вынужденных снова схватиться за свои записные книжки.

Но эта проблема важна не только для струнных теоретиков. «Весь этот спор вокруг файерволов вёлся в основном в сообществе струнных теоретиков, чего я не понимаю,- сказал Верлинде. – Вопросы квантовой информации, запутанности и постройки математического Гилбертова пространства – это то, над чем работали специалисты по ПКГ».

В это время произошло незамеченное большинством специалистов по струнам событие – падение барьера, возведённого суперсимметрией и дополнительными измерениями. Группа Томаса Тиманна в Университете Эрлангена - Нюрнберга (Германия) распространила ПКГ на высшие измерения и включила в неё суперсимметрию – а эти понятия раньше были территорией исключительно теории струн.

Недавно Норберт Бодендорфер [Norbert Bodendorfer ], бывший студент Тиманна, работающий в Варшавском университете, применил методы петлевой квантификации из ПКГ к пространству AdS. Он утверждает, что ПКГ полезно для работы с дуальностью AdS/CFT в тех случаях, когда струнные теоретики не могут проводить гравитационные подсчёты. Бодендорфер считает, что существовавшая между ПКГ и струнами пропасть исчезает. «Иногда у меня складывалось впечатление, что струнные теоретики очень плохо разбираются в ПКГ и не хотят говорить об этом,- сказал он. – Но более молодые специалисты демонстрируют открытость взглядов. Им очень интересно, что происходит на стыке областей».

«Самое большое различие состоит в том, как мы определяем наши вопросы,- говорит Верлинде. – Проблема больше социологическая, а не научная, к сожалению». Он не думает, что два подхода конфликтуют: «Я всегда считал струнную теорию и ПКГ частями одного описания. ПКГ это метод, а не теория. Это метод размышления над квантовой механикой и геометрией. Это метод, который струнные теоретики могут использовать, и уже используют. Эти вещи не исключают друг друга».

Но не все уверены в этом Моше Розали [Moshe Rozali ], струнный теоретик из Университета Британской Колумбии, сохраняет скептицизм по поводу ПКГ: «Я не работаю над ПКГ потому, что у неё есть проблемы с СТО,- говорит он. – Если ваш подход с самого начала без уважения относится к симметриям в СТО, вам потребуется чудо на одном из промежуточных шагов». Тем не менее, по словам Розали, некоторые математические инструменты, пришедшие из ПКГ, могут пригодиться. «Не думаю, что существует возможность объединения ПКГ и струнной теории. Но людям обычно нужны методы, и в этом смысле они похожи. Математические методы могут пересекаться».

Также и не все приверженцы ПКГ ждут слияния двух теорий. Карло Ровелли , физик из Марсельского университета и основатель теории ПКГ верит в преобладание своей теории. «Сообщество любителей струн уже не такое заносчивое, как десять лет назад, особенно после жестокого разочарования отсутствием суперсимметричных частиц ,- говорит он. – Возможно, что две теории могут быть частями одного решения… но я думаю, вряд ли. По-моему, струнная теория не смогла дать то, что она обещала в 80-х годах, и представляет собою одну из тех идей, что выглядят симпатично, но не описывают реальный мир, которых в истории науки было полно. Не понимаю, как люди ещё могут возлагать на неё надежды».

Пуллин же считает, что объявлять победу преждевременно: «Приверженцы ПКГ говорят, что их теория единственно верна. Я под этим не подпишусь. Мне кажется, что обе теории чрезвычайно неполны».

Теги: Добавить метки

Определение 1

Петлевая квантовая теория представляет собой знание о петлевой гравитации квантов. Основателями ее были такие ученые, как Т. Джекобсон, К. Ровелли, А. Аштекар и Л. Смолин.

Сущность петлевой квантовой теории

Согласно данной теории, время и пространство состоят из дискретных квантовых ячеек, соединенных определенным образом между собой. Это позволяет им создавать дискретную структуру на незначительных масштабах времени, а на больших временное пространство становится уже непрерывным.

Таким образом, пространство складывается из очень маленьких ячеек, плавно соединенных друг с другом, формируя для нас окружающее пространство. В моменты образования этими связками узлов и сплетений формируются элементарные частицы.

Благодаря петлевой квантовой гравитации, ученым удалось выяснить факт исчезновения начальной сингулярности под воздействием квантовых эффектов. Таким образом, Большой взрыв перестает быть завесой тайны, за которую нельзя заглянуть. Наука позволяет теперь посмотреть на события, происходившие во Вселенной до него.

Главными объектами в петлевой квантовой теории выступают особые ячейки пространства, чьим состоянием и поведением управляет определенное поле, существующее в них. Его величина становится для таких ячеек так называемым «внутренним временем». Иными словами, переход от слабого поля к более сильному предполагает существование «прошлого», способного воздействовать на определенное «будущее».

Следовательно, теория приравнивает пространство атомам: получаемые при определении объема числа формируют дискретный набор, что позволяет объему изменяться отдельными порциями. Это, в свою очередь, лишает пространство непрерывности и допускает идею его существования в формате неких квантовых единиц объема и площади.

Специфика петлевой квантовой теории

В случае описания квантово-механических явлений ученые-физики вычисляют показатели вероятности различных процессов, которые происходят при определенных обстоятельствах. То же самое происходит при задействовании теории петлевой квантовой гравитации в целях описания изменений геометрии пространства либо перемещения полей и частиц в спиновой сети.

Замечание 1

Точные выражения с целью определения показателя квантовой вероятности шагов спиновой сети удалось вывести ученому Томасу Тиманну. Конечным результатом таких вычислений стало возникновение четкой методики по вычислению вероятности какого-либо процесса, чье происхождение вероятно в этом мире в рамках подчинения законам вышеуказанной теории.

Теория относительности предполагает неотделимость времени и пространства друг от друга и существование их в формате единого временного пространства. Введение концепции временного пространства в петлевую квантовую теорию, спиновые сети, которые представляют пространство, становятся так называемой «спиновой пеной».

При включении еще одного показателя измерения - времени – происходит расширение линий спиновой сети и превращение их в двумерные поверхности, при этом наблюдается рассасывание узлов в линии. Переходы, провоцирующие изменение спиновой сети, теперь представлены в форме специальных узлов, внутри которых происходит объединение линий пены. Мгновенный снимок происходящего процесса визуально схож с изображением поперечного среза временного пространства.

Аналогичный срез спиновой пены является спиновой сетью, но не стоит при этом заблуждаться относительно перемещений плоскости среза в непрерывном режиме, аналогично плавному потоку времени. Подобно процессу определения пространства в виде дискретной геометрии спиновой сети, время будет задаваться как последовательность отдельных шагов, перестраиваемых сетью.

Таким образом, можно сделать определенные выводы:

  1. О дискретности времени, то есть, оно не течет, подобно реке, а более напоминает тикающие часы, интервал между тиками которых приблизительно равен времени Планка. Иными словами, время во Вселенной отмеряется мириадами часов: в той области, где в спиновой пене осуществляется квантовый шаг, часы производят один «тик».
  2. Петлевая квантовая гравитация способствует характерным предсказаниям новых событий и явлений. Фактически, она считается полностью совместимой с постулатом и трехмерности мира и одном временном измерении.
  3. Являясь совместимой с широким диапазоном различных версий относительно содержащейся в мире материи, она не требует наличия симметрий, размерностей или степени свободы, за исключением исследуемых учеными.

В то же время имеются версии петлевой квантовой гравитации, включающие суперсимметрию распространение многих результатов на более высокие размерности. По этой причине, при возникновении указаний на присутствие суперсимметрии либо на высшие размерности, для петлевой квантовой теории проблем не возникает. Вместо этого, предположения петлевой гравитации квантов будут относиться к структуре пространства на очень незначительных расстояниях.

Таким образом, петлевая квантовая гравитация предполагает присутствие в действительности гладкой картины временного пространства классической ОТО только в виде результата усреднения дискретной структуры, внутри которой области и поверхности могут обладать исключительно определенными дискретными квантованными значения объемов и площадей.

Замечание 2

Петлевая квантовая гравитация позволяет получить специфические предположения для дискретной геометрии квантов (речь идет о коротких дистанциях). Более того, такие предположения начинают формироваться на базе первых принципов, а следовательно, они исключают в себе элементы подгонки.

В этом смысле подходы в петлевой квантовой гравитации имеют определенные отличия в сравнении с другими подходами, постулирующими некую форму дискретной структуры в формате стартовой позиции и без выведения ее в виде следствия объединения ОТО с квантовой теорией.

Различия между теорией струн и теорией петлевой квантовой гравитации

Ученые отмечают принципиальные отличия петлевой квантовой теории от других теорий. В частности, - теории суперструн. В последней главными объектами выступают многомерные мембраны и струны, перемещающиеся в изначально подготовленном для них времени и пространстве. При этом факторы возникновения этого многомерного пространства данная теория называть не позволяет.

Вышеуказанные теории в своей основе используют одномерные протяженные объекты, соответствующие по своей дуальности потоку линий калибровочного квантованного поля. Их отличия наблюдаются по трем соотношениям:

  1. Струны рассматриваются со свойством перемещения в классическом формате, что характеризуется зафиксированным выбором метрики и прочих классических полей. Существование петель при этом допускается к рассмотрению на более фундаментальном уровне, где отсутствуют другие поля и классическая метрика.
  2. Калибровочное поле в случае с петлями рассматривается в формате калибрующей области всех лоренцевых преобразований или только некоторой их части. При открытых струнах такое поле же будет соответствовать полю Янга-Миллса.
  3. Петлевая квантовая гравитация допускает квантование без соответствующих предположений. В действительности, поскольку глобальная лоренцева инвариантность не представляет собой симметрию классической ОТО, то она не может допускаться к рассмотрению и в случаях любого точного квантования данной теории.

Родоначальниками «петлевой квантовой теории гравитации» в 80-е годы XX века являются Ли Смолин , Абэй Аштекар , Тэд Джекобсон (англ. ) и Карло Ровелли . Согласно этой теории, пространство и время состоят из дискретных частей. Эти маленькие квантовые ячейки пространства определённым способом соединены друг с другом, так что на малых масштабах времени и длины они создают пёструю, дискретную структуру пространства, а на больших масштабах плавно переходят в непрерывное гладкое пространство-время .

Петлевая гравитация и физика элементарных частиц

Одним из преимуществ петлевой квантовой теории гравитации является естественность, с которой в ней получает своё объяснение Стандартная модель физики элементарных частиц.

Таким образом, Бильсон-Томпсон с соавторами предположили, что теория петлевой квантовой гравитации может воспроизвести Стандартную модель, автоматически объединяя все четыре фундаментальных взаимодействия . При этом с помощью преонов, представленных в виде брэдов (переплетений волокнистого пространства-времени) удалось построить успешную модель первого поколения фундаментальных фермионов (кварков и лептонов) с более-менее правильным воспроизведением их зарядов и четностей .

В исходной статье Бильсона-Томпсона предполагалось, что фундаментальные фермионы второго и третьего поколений могут быть представлены в виде более сложных брэдов, а фермионы первого поколения представляются простейшими из возможных брэдов, хотя конкретных представлений сложных брэдов не давалось. Считается, что электрический и цветовой заряды, а также чётность частиц, принадлежащих к поколениям более высокого ранга, должны получаться точно таким же образом, как и для частиц первого поколения. Использование методов квантовых вычислений позволило показать, что такого рода частицы устойчивы и не распадаются под действием квантовых флуктуаций .

Ленточные структуры в модели Бильсона-Томпсона представлены в виде сущностей, состоящих из той же материи, что и само пространство-время . Хотя в статьях Бильсона-Томпсона и показано, как из этих структур можно получить фермионы и бозоны , вопрос о том, как с помощью брэдинга можно было бы получить бозон Хиггса , в них не обсуждается.

Л. Фрейдель (L. Freidel ), Дж. Ковальский-Гликман (J. Kowalski-Glikman ) и А. Стародубцев в своей статье 2006 года высказали предположение, что элементарные частицы можно представить с помощью линий Вильсона гравитационного поля, подразумевая, что свойства частиц (их массы, энергии и спины) могут соответствовать свойствам петель Вильсона - базовым объектам теории петлевой квантовой гравитации. Эту работу можно рассматривать в качестве дополнительной теоретической поддержки преонной модели Бильсона-Томпсона .

Используя формализм модели спиновой пены , имеющей непосредственное отношение к теории петлевой квантовой гравитации, и базируясь лишь на исходных принципах последней, можно также воспроизвести и некоторые другие частицы Стандартной модели, такие как фотоны , глюоны и гравитоны - независимо от схемы брэдов Бильсона-Томпсона для фермионов. Однако, по состоянию на 2006 год, с помощью этого формализма пока не удалось построить модели гелонов. В модели гелонов отсутствуют брэды, которые можно было бы использовать для построения бозона Хиггса, но в принципе данная модель не отрицает возможности существования этого бозона в виде некоей композитной системы. Бильсон-Томпсон отмечает, что, поскольку частицы с бо́льшими массами в основном имеют более сложную внутреннюю структуру (учитывая также перекручивание брэдов), то эта структура возможно имеет отношение к механизму формирования массы. Например, в модели Бильсона-Томпсона структура фотона, имеющего нулевую массу, соответствует неперекрученным брэдам. Правда, пока остается неясным, соответствует ли модель фотона, полученная в рамках формализма спиновой пены , фотону Бильсона-Томпсона, который в его модели состоит из трех незакрученных риббонов (возможно, что в рамках формализма спиновой пены можно построить несколько вариантов модели фотона).

Первоначально понятие «преон» использовалось для обозначения точечных субчастиц, входящих в структуру фермионов с половинным спином (лептонов и кварков). Как уже упоминалось, использование точечных частиц приводит к парадоксу массы. В модели Бильсона-Томпсона риббоны не являются «классическими» точечными структурами. Бильсон-Томпсон использует термин «преон» для сохранения преемственности в терминологии, но обозначает с помощью этого термина более широкий класс объектов, являющихся компонентами структуры кварков, лептонов и калибровочных бозонов.

Важным для понимания подхода Бильсона-Томпсона является то, что в его преонной модели элементарные частицы, такие как электрон , описываются в терминах волновых функций. Сумма квантовых состояний спиновой пены, имеющих когерентные фазы, также описывается в терминах волновой функции. Поэтому возможно, что с помощью формализма спиновой пены можно получить волновые функции, соответствующие элементарным частицам (фотонам и электронам). В настоящее время объединение теории элементарных частиц с теорией петлевой квантовой гравитации является весьма активной областью исследований .

В октябре 2006 г. Бильсон-Томпсон модифицировал свою статью , отмечая, что, хотя его модель и была вдохновлена преонными моделями, но она не является преонной в строгом смысле этого слова, поэтому топологические диаграммы из его преонной модели скорее всего можно использовать и в других фундаментальных теориях, таких как, например, М-теория . Теоретические ограничения, накладываемые на преонные модели, неприменимы к его модели, поскольку в ней свойства элементарных частиц возникают не из свойств субчастиц, а из связей этих субчастиц друг с другом (брэдов). Одной из возможностей является, например, «встраивание» преонов в М-теорию или в теорию петлевой квантовой гравитации.

Сабина Хоссенфельдер предложила рассматривать двух альтернативных претендентов на «теорию всего» - теорию струн и петлевую квантовую гравитацию как стороны одной медали. Чтобы петлевая квантовая гравитация не противоречила специальной теории относительности, в ней необходимо ввести взаимодействия, которые похожи на рассматриваемые в теории струн. .

Проблемы теории

В модифицированной версии своей статьи Бильсон-Томпсон признает, что нерешенными проблемами в его модели остаются спектр масс частиц, спины , смешивание Кабиббо , а также необходимость привязки его модели к более фундаментальным теориям.

В более позднем варианте статьи описывается динамика брэдов с помощью переходов Пачнера (англ. Pachner moves ).

См. также

Источники

Литература

Примечания

  1. Смолин Л. Атомы пространства и времени // В мире науки . - 2004. - № 4. - С. 18-25. - URL: http://www.chronos.msu.ru/RREPORTS/smolin_atomy/smolin_atomy.htm Архивная копия от 23 февраля 2009 на Wayback Machine
  2. , с. 219.
  3. С. Ю. Александров Лоренц-ковариантная петлевая квантовая гравитация // ТМФ. - 2004. - т. 139, № 3. - c. 363–380. - URL:
Относится к «Теории мироздания»

Теория петлевой квантовой гравитации

Что было до Большого взрыва и откуда взялось время?

В теор ии квантовой гравитации привычное нам гладкое и непрерывное пространство на сверхмалых масштабах оказывается структурой с очень сложной геометрией

(изображение с сайта www.aei.mpg.de)

Вопросы, вынесенные в заголовок, обычно физиками не обсуждаются, поскольку общепринятой теор ии, способной на них ответить, пока нет. Однако недавно в рамках петлевой квантовой гравитации всё же удалось проследить эволюцию упрощенной модели Вселенной назад во времени, вплоть до момента Большого взрыва, и даже заглянуть за него. Попутно выяснилось, как именно в этой модели возникает время.

Наблюдения за Вселенной показывают, что и на самых больших масштабах она вовсе не неподвижна, а эволюционирует с течением времени . Если на основе современных теор ий проследить эту эволюцию назад во времени, то окажется, что наблюдаемая ныне часть Вселенной была раньше горячее и компактнее, чем сейчас, а начало ей дал Большой взрыв - некий процесс возникновения Вселенной из сингулярности: особой ситуации, для которой современные законы физики неприменимы.

Физиков такое положение вещей не устраивает: им хочется понять и сам процесс Большого взрыва. Именно поэтому сейчас предпринимаются многочисленные попытки построить теор ию, которая была бы применима и к этой ситуации. Поскольку в первые мгновения после Большого взрыва самой главной силой была гравитация, считается, что достичь этой цели возможно только в рамках непостроенной пока квантовой теор ии гравитации .

Одно время физики надеялись, что квантовая гравитация будет описана с помощью теор ии суперструн , но недавний кризис суперструнных теор ий поколебал эту уверенность. В такой ситуации больше внимания стали привлекать иные подходы к описанию квантовогравитационных явлений, и в частности, петлевая квантовая гравитации .

Именно в рамках петлевой квантовой гравитации недавно был получен очень впечатляющий результат. Оказывается, из-за квантовых эффектов начальная сингулярность исчезает . Большой взрыв перестает быть особой точкой, и удается не только проследить его протекание, но и заглянуть в то, что было до Большого взрыва. Краткое описание этих результатов было недавно опубликовано в статье A. Ashtekar, T. Pawlowski, P. Singh, Physical Review Letters, 96, 141301 (12 April 2006) , доступной также как gr-qc/0602086 , а их подробный вывод изложен в вышедшем на днях препринте этих же авторов gr-qc/0604013 .

Петлевая квантовая гравитация принципиально отличается от обычных физических теор ий и даже от теор ии суперструн. Объектами теор ии суперструн, к примеру, являются разнообразные струны и многомерные мембраны, которые, однако, летают в заранее приготовленном для них пространстве и времени. Вопрос о том, как именно возникло это многомерное пространство-время, в такой теор ии не решишь.

В петлевой теор ии гравитации главные объекты - маленькие квантовые ячейки пространства , определенным способом соединенные друг с другом. Законом их соединения и их состоянием управляет некоторое поле, которое в них существует. Величина этого поля является для этих ячеек неким «внутренним временем »: переход от слабого поля к более сильному полю выглядит совершенно так, как если бы было некое «прошлое», которое бы влияло на некое «будущее». Закон этот устроен так, что для достаточно большой вселенной с малой концентрацией энерги и (то есть далеко от сингулярности) ячейки как бы «сплавляются» друг с другом, образуя привычное нам «сплошное» пространство-время.

Авторы статьи утверждают, что всего этого уже достаточно, чтобы решить задачу о том, что происходит со Вселенной при приближении к сингулярности. Решения полученных ими уравнений показали, что при экстремальном «сжатии» вселенной пространство «рассыпается», квантовая геометрия не позволяет уменьшить его объем до нуля, неизбежно происходит остановка и вновь начинается расширение. Эту последовательность состояний можно отследить как вперед, так и назад во «времени», а значит, в этой теор ии до Большого взрыва с неизбежностью присутствует «Большой хлопок» - коллапс «предыдущей» вселенной. При этом свойства этой предыдущей вселенной не теряются в процессе коллапса, а однозначно передаются в нашу Вселенную.

Описанные вычисления опираются, правда, на некоторые упрощающие предположения о свойствах универсального поля. По-видимому, общие выводы сохранятся и без таких предположений, но это еще нуждается в проверке. Будет крайне интересно проследить за дальнейшим развитием этих идей.

Атомы пространства и времени

© Ли Смолин
"В мире науки", апрель 2004

Ли Смолин

Если удивительная теор ия петлевой квантовой гравитации верна, то пространство и время, воспринимаемые нами как непрерывные, на самом деле состоят из дискретных частиц.

С древних времен некоторые философы и ученые предполагали, что материя может состоять из крошечных атомов, но еще 200 лет назад мало кто верил, что их существование можно доказать. Сегодня мы наблюдаем отдельные атомы и изучаем частицы, их составляющие. Зернистое строение вещества для нас уже не новость.
В последние десятилетия физики и математики задаются вопросом: не из дискретных ли частей состоит пространство? Действительно ли оно непрерывно или больше похоже на кусок ткани, сотканной из отдельных волокон? Если бы мы могли наблюдать чрезвычайно малые объекты, то увидели бы атомы пространства, неделимые мельчайшие частицы объема? А как быть со временем: плавно ли происходят изменения в природе или мир развивается крошечными скачками, действуя словно компьютер?
За последние 16 лет ученые заметно приблизились к ответам на эти вопросы. Согласно теор ии со странным названием «петлевая квантовая гравитация», пространство и время действительно состоят из дискретных частей. Расчеты, выполненные в рамках этой концепции, описывают простую и красивую картину, которая помогает нам объяснить загадочные явления, относящиеся к черным дырам и Большому взрыву. Но главное достоинство упомянутой теор ии заключается в том, что уже в ближайшем будущем ее предсказания можно будет проверить экспериментально: мы обнаружим атомы пространства, если они действительно существуют.

Кванты

Вместе с моими коллегами мы развивали теор ию петлевой квантовой гравитации (ПКГ), пытаясь разработать долгожданную квантовую теор ию тяготения. Чтобы объяснить исключительную важность последней и ее отношение к дискретности пространства и времени, я должен немного рассказать о квантовой теор ии и теор ии гравитации.
Появление квантовой механики в первой четверти XX в. было связано с доказательством, что материя состоит из атомов. Квантовые уравнения требуют, чтобы некоторые величины, такие как энерги я атома, могли принимать только определенные дискретные значения. Квантовая механика в точности описывает свойства и поведение атомов, элементарных частиц и связывающих их сил. Самая успешная в истории науки квантовая теор ия лежит в основе нашего понимания химии, атомной и субатомной физики, электроники и даже биологии.
В те же десятилетия, когда зарождалась квантовая механика, Альберт Эйнштейн разработал общую теор ию относительности, которая представляет собой теор ию гравитации. Согласно ей, сила тяготения возникает в результате изгиба пространства и времени (которые вместе образуют пространство-время) под действием материи.
Представьте себе тяжелый шар, помещенный на резиновый лист, и маленький шарик, который катается вблизи большого. Шары можно рассматривать как Солнце и Землю, а лист - как пространство. Тяжелый шар создает в резиновом полотне углубление, по склону которого меньший шарик скатывается к большему, как будто некоторая сила - гравитатация - тянет его в этом направлении. Точно так же любая материя или сгусток энерги и искажают геометрию пространства-времени, притягивая частицы и световые лучи; это явление мы и называем гравитацией.
По отдельности квантовая механика и общая теор ия относительности Эйнштейна экспериментально подтверждены. Однако еще ни разу не исследовался случай, когда можно было бы проверить обе теор ии одновременно. Дело в том, что квантовые эффекты заметны лишь в малых масштабах, а для того, чтобы стали заметны эффекты общей теор ии относительности, требуются большие массы. Объединить оба условия можно лишь при каких-то экстраординарных обстоятельствах.
Помимо отсутствия экспериментальных данных существует огромная концептуальная проблема: общая теор ия относительности Эйнштейна полностью классическая, т.е. неквантовая. Для обеспечения логической целостности физики нужна квантовая теор ия гравитации, объединяющая квантовую механику с общей теор ией относительности в квантовую теор ию пространства-времени.
Физики разработали множество математических процедур для превращения классической теор ии в квантовую. Многие ученые тщетно пытались применить их к общей теор ии относительности.
Расчеты, проведенные в 1960-х и 1970-х гг., свидетельствовали о том, что квантовую механику и общую теор ию относительности объединить невозможно. Казалось, ситуацию может спасти только введение совершенно новых постул атов, дополнительных частиц, полей или объектов иного рода. Экзотика единой теор ии должна проявляться только в тех исключительных случаях, когда существенными становятся и квантово-механические, и гравитационные эффекты. В попытках достижения компромисса родились такие направления, как теор ия твисторов, некоммутативная геометрия и супергравитация.
Большой популярностью у физиков пользуется теор ия струн, согласно которой помимо трех хорошо известных пространственных измерений есть еще шесть или семь, которые до сих пор никому не удавалось заметить. Теория струн также предсказывает существование множества новых элементарных частиц и сил, наличие которых еще ни разу не было подтверждено наблюдениями. Некоторые ученые полагают, что она является частью так называемой М-теор ии, но, к сожалению, никакого точного ее определения пока предложено не было. Поэтому многие специалисты убеждены, что следует изучить имеющиеся альтернативы. Наша петлевая квантовая теор ия гравитации - наиболее развитая из них.

Большая лазейка

В середине 1980-х гг. мы вместе с Аби Аштекером (Abhay Ashtekar), Тэдом Джекобсоном (Ted Jacobson) и Карло Ровелли (Carlo Rovelli) решили еще раз попытаться объединить квантовую механику и общую теор ию относительности с помощью стандартных методов. Дело в том, что в отрицательных результатах, полученных в 1970-х гг., оставалась важная лазейка: при расчетах предполагалось, что геометрия пространства непрерывная и гладкая независимо от того, насколько детально мы исследуем ее. Точно также люди рассматривали вещество до открытия атомов.
Итак, мы решили отказаться от концепции гладкого непрерывного пространства и не вводить никаких гипотез , кроме хорошо проверенных экспериментально положений общей теор ии относительности и квантовой механики. В частности, в основе наших расчетов были заложены два ключевых принципа теор ии Эйнштейна.
Первый из них - независимость от окружения - провозглашает, что геометрия пространства-времени не фиксирована, а является меняющейся, динамической величиной. Чтобы определить геометрию, необходимо решить ряд уравнений, учитывающих влияние вещества и энерги и. Кстати, современная теор ия струн не является независимой от окружения: уравнения, описывающие струны, сформулированы в определенном классическом (т.е. неквантовом) пространстве-времени.
Второй принцип, названный «диффеоморфной инвариантностью», гласит, что для отображения пространства-времени и построения уравнений мы вольны выбирать любую систему координат. Точка в пространстве-времени задается только физически происходящими в ней событиями, а не ее положением в какой-то особой системе координат (не существует никаких особых координат). Диффеоморфная инвариантность - чрезвычайно важное фундаментальное положение общей теор ии относительности.
Аккуратно объединив оба принципа со стандартными методами квантовой механики, мы разработали математический язык, который позволил провести нужные вычисления и выяснить, дискретно пространство или непрерывно. К нашему восторгу, из расчетов следовало, что пространство квантовано! Так мы заложили основу теор ии петлевой квантовой гравитации. Кстати, термин «петлевая» был введен из-за того, что в некоторых вычислениях использовались маленькие петли, выделенные в пространстве-времени.
Многие физики и математики проверили наши расчеты с использованием различных методов. За прошедшие годы теор ия петлевой квантовой гравитации окрепла благодаря усилиям ученых разных стран мира. Проделанная работа позволяет нам доверять той картине пространства-времени, которую я опишу ниже.
В нашей квантовой теор ии речь идет о структуре пространства-времени в самых малых масштабах, и чтобы разобраться в ней, необходимо рассматривать ее предсказания для маленькой площади или объема. Имея дело с квантовой физикой, важно определить, какие физические величины должны быть измерены. Представьте себе некую область, обозначенную границей В (см. рис. внизу), которая может быть задана материальным объектом (например, чугунной скорлупой) или непосредственно геометрией пространства-времени (например, горизонтом событий в случае черной дыры). Что происходит, когда мы измеряем объем описанной области? Каковы возможные результаты, допускаемые как квантовой теор ией, так и диффеоморфной инвариантностью? Если геометрия пространства непрерывна, то рассматриваемая область может иметь любой размер, и ее объем может быть выражен любым действительным положительным числом, в частности, сколь угодно близким к нулю. Но если геометрия гранулированa, то результат измерения может принадлежать только дискретному набору чисел и не может быть меньше некоторого минимально возможного объема. Давайте вспомним, какой энерги ей может обладать электрон, обращающийся вокруг атомного ядра? В рамках классической физики - любой, но квантовая механика допускает только определенные, строго фиксированные дискретные значения энерги и. Различие такое же, как между измерением объема жидкости, образующей непрерывный поток (с точки зрения ученых XVIII в.), и определением количества воды, атомы которой можно сосчитать.
Согласно теор ии петлевой квантовой гравитации, пространство подобно атомам: числа, получаемые при измерении объема, образуют дискретный набор, т.е. объем изменяется отдельными порциями. Другая величина, которую можно измерить, - площадь границы В, которая тоже оказывается дискретной. Иными словами, пространство не непрерывно и состоит из определенных квантовых единиц площади и объема.
Возможные значения объема и площади измеряются в единицах, производных от длины Планка, которая связана с силой гравитации, величиной квантов и скоростью света. Длина Планка очень мала: 10 -33 см; она определяет масштаб, при котором геометрию пространства уже нельзя считать непрерывной. Самая маленькая возможная площадь, отличная от нуля, примерно равна квадрату длины Планка или 10 -66 см 2 . Наименьший возможный объем, отличный от нуля, - куб длины Планка или 10 -99 см 3 . Таким образом, согласно теор ии в каждом кубическом сантиметре пространства содержится приблизительно 10 99 атомов объема. Квант объема настолько мал, что в кубическом сантиметре таких квантов больше, чем кубических сантиметров в видимой Вселенной (10 85).

Спиновые сети

На что же похожи кванты объема и площади? Быть может, пространство состоит из огромного количества крошечных кубов или сфер? Нет, не все так просто. Квантовые состояния объема и площади мы изображаем в виде диаграмм, которые не лишены своеобразной красоты. Вообразите область пространства, по форме напоминающую куб (см. рис. внизу ). На диаграмме мы изображаем ее как точку, представляющую объем, с шестью выходящими из нее линиями, каждая из которых изображает одну из граней куба. Число рядом с точкой указывает величину объема, а числа рядом с линиями - величину площади соответствующих граней.
Поместим на вершину куба пирамиду. У наших многогранников есть общая грань, и их следует изобразить как две точки (два объема), соединенные одной из линий (грань, которая соединяет объемы). У куба осталось пять свободных граней (пять линий), а у пирамиды - четыре (четыре линии). Аналогично можно изобразить любые комбинации различных многогранников: объемные полиэдры становятся точками или узлами, а плоские грани - линиями, соединяющими узлы. Математики называют такие диаграммы графами.
В нашей теор ии мы отбрасываем рисунки многогранников и оставляем только графы. Математика, описывающая квантовые состояния объема и площади, обеспечивает нас набором правил, указывающих, как линии могут соединять узлы и какие числа могут располагаться в различных местах диаграммы. Каждое квантовое состояние соответствует одному из графов, и каждому графу, удовлетворяющему правилам, соответствует квантовое состояние. Графы представляют собой удобную краткую запись возможных квантовых состояний пространства.
Диаграммы гораздо больше подходят для представления квантовых состояний, чем многогранники. В частности, некоторые графы соединяются такими странными способами, что их невозможно аккуратно преобразовать в картину из полиэдров. Например, в тех случаях, когда пространство изогнуто, невозможно изобразить многогранники, стыкующиеся должным образом, зато совсем не трудно нарисовать граф и по нему вычислить, насколько искажено пространство. Поскольку именно искажение пространства создает гравитацию, диаграммы играют огромную роль в квантовой теор ии тяготения.
Для простоты мы часто рисуем графы в двух измерениях, но лучше представлять их заполняющими трехмерное пространство, потому что именно его они изображают. Но здесь есть концептуальная ловушка: линии и узлы графа не занимают конкретные положения в пространстве. Каждый граф определяется только тем, как его части соединяются между собой и как они соотносятся с четко заданными границами (например, с границей области B). Однако нет никакого непрерывного трехмерного пространства, в котором, как может показаться, размещаются графы. Линии и узлы - это и есть пространство, геометрия которого определяется тем, как они соединяются.
Описанные графы называются спиновыми сетями, потому что указанные на них числа связаны со спином. Еще в начале 1970-х гг. Роджер Пенроуз (Roger Penrose) из Оксфордского университета предположил, что спиновые сети имеют отношение к теор ии квантовой гравитации. В 1994 г. наши точные вычисления подтвердили его интуитивную догадку. Читатели, знакомые с диаграммами Фейнмана, должны обратить внимание, что спиновые сети ими не являются, несмотря на внешнее сходство. Диаграммы Фейнмана отражают квантовые взаимодействия между частицами, переходящими из одного квантового состояния в другое. Спиновые сети олицетворяют фиксированные квантовые состояния объемов и площадей пространства.
Отдельные узлы и ребра диаграмм представляют собой чрезвычайно малые области пространства: типичный узел соответствует объему около одной длины Планка в кубе, а линия - площади порядка одной длины Планка в квадрате. Но, в принципе, спиновая сеть может быть неограниченно большой и сколь угодно сложной. Если бы мы могли изобразить детальную картину квантового состояния нашей Вселенной (т.е. геометрию ее пространства, искривленного и перекрученного тяготением галактик, черных дыр и пр.), то получилась бы гигантская спиновая сеть невообразимой сложности, содержащая приблизительно 10 184 узлов.
Итак, спиновые сети описывают геометрию пространства. Но что можно сказать о материи и энерги и, находящихся в нем? Частицы, такие как электроны, соответствуют определенным узлам, снабженным дополнительными метками. Поля, такие как электромагнитное, обозначаются аналогичными маркерами на линиях графа. Движение частиц и полей в пространстве представляет собой дискретное (скачкообразное) перемещение меток по графу.

Шаги и пена

Частицы и поля - не единственные движущиеся объекты. Согласно общей теор ии относительности, при перемещении материи и энерги и пространство модифицируется, по нему даже могут проходить волны, подобно ряби на озере. В теор ии петлевой квантовой гравитации такие процессы изображаются дискретными трансформациями спиновой сети, при которых шаг за шагом изменяется связность графов (см. рис. внизу).
При описании квантово-механических явлений физики вычисляют вероятность различных процессов. Мы делаем то же самое, когда применяем теор ию петлевой квантовой гравитации, чтобы описать изменение геометрии пространства или движение частиц и полей в спиновой сети. Томас Тиманн (Thomas Thiemann) из Института теор етической физики в Ватерлоо вывел точные выражения для вычисления квантовой вероятности шагов спиновой сети. В результате появилась четкая процедура для вычисления вероятности любого процесса, который может происходить в мире, подчиняющемся правилам нашей, теперь уже окончательно сформировавшейся теор ии. Остается только вычислять и делать предсказания о том, что можно будет наблюдать в тех или иных экспериментах.
В теор ии относительности пространство и время неотделимы и представляют собой единое пространство-время. При введении концепции пространства-времени в теор ию петлевой квантовой гравитации спиновые сети, представляющие пространство, превращаются в так называемую спиновую пену. С добавлением еще одного измерения - времени - линии спиновой сети расширяются и становятся двумерными поверхностями, а узлы растягиваются в линии. Переходы, при которых происходит изменение спиновой сети (шаги, описанные выше), теперь представлены узлами, в которых сходятся линии пены. Взгляд на пространство-время как на спиновую пену был предложен несколькими исследователями, в том числе Карло Ровелли (Carlo Rovelli), Майком Рейзенбергером (Mike Reisenberger), Джоном Бэрретом (John Barrett), Луи Крейном (Louis Crane), Джоном Бейзом (John Baez) и Фотини Маркопулу (Fotini Markopoulou).
Мгновенный снимок происходящего подобен поперечному срезу пространства-времени. Аналогичный срез спиновой пены представляет собой спиновую сеть. Однако не стоит заблуждаться, что плоскость среза перемещается непрерывно подобно плавному потоку времени. Также как пространство определяется дискретной геометрией спиновой сети, время задается последовательностью отдельных шагов, которые перестраивают сеть (см. рис. на стр. 55). Таким образом, время тоже дискретно. Время не течет, как река, а тикает, как часы. Интервал между «тиками» примерно равен времени Планка, или 10 -43 с. Точнее говоря, время в нашей Вселенной отмеряют мириады часов: там, где в спиновой пене происходит квантовый шаг, часы делают один «тик».

Предсказания и проверки

Теория петлевой квантовой гравитации описывает пространство и время в масштабе Планка, который слишком мал для нас. Так как же нам проверить ее? Во-первых, очень важно выяснить, можно ли вывести классическую общую теор ию относительности как приближение к петлевой квантовой гравитации. Другими словами, если спиновые сети подобны нитям, из которых соткана ткань, то вопрос стоит так: удастся ли правильно вычислить упругие свойства куска материала путем усреднения по тысячам нитей. Получим ли мы описание «гладкой ткани» классического эйнштейновского пространства, если усредним спиновую сеть по многим длинам Планка? Недавно ученые успешно решили эту сложнейшую задачу для нескольких частных случаев, так сказать, для некоторых конфигураций материала. Например, низкочастотные гравитационные волны, распространяющиеся в плоском (неизогнутом) пространстве, можно рассматривать как возбуждение определенных квантовых состояний, описанных в соответствии с теор ией петлевой квантовой гравитации.
Хорошей проверкой для петлевой квантовой гравитации оказалась одна из давнишних загадок о термодинамике черных дыр, и в особенности об их энтропии. Физики разработали термодинамическую модель черной дыры, опираясь на гибридную теор ию, в которой материя рассматривается квантово-механически, а пространство-время - нет. В частности, в 1970-х гг. Якоб Бекенштейн (Jacob D. Bekenstein) вывел, что энтропия черной дыры пропорциональна площади ее поверхности (см. статью «Информация в голографической Вселенной», «В мире науки», №11, 2003 г.). Вскоре Стивен Хокинг (Stephen Hawking) пришел к выводу, что черные дыры, особенно маленькие, должны излучать.
Чтобы выполнить аналогичные вычисления в рамках теор ии петлевой квантовой гравитации, мы принимаем границу области В за горизонт событий черной дыры. Анализируя энтропию соответствующих квантовых состояний, мы получаем в точности предсказание Бекенштейна. С таким же успехом наша теор ия не только воспроизводит предсказание Хокинга об излучении черной дыры, но и позволяет описать его тонкую структуру. Если когда-либо удастся наблюдать микроскопическую черную дыру, теор етические предсказания можно будет проверить, изучая спектр ее излучения.
Вообще говоря, любая экспериментальная проверка теор ии петлевой квантовой гравитации сопряжена с колоссальными техническими трудностями. Характерные эффекты, описываемые теор ией, становятся существенными только в масштабе длины Планка, который на 16 порядков меньше, чем можно будет исследовать в ближайшее время на самых мощных ускорителях (для исследования меньших масштабов необходима более высокая энерги я).
Впрочем, недавно ученые предложили несколько доступных способов проверки петлевой квантовой гравитации. Длина световой волны, распространяющейся в среде, претерпевает искажения, что приводит к преломлению и дисперсии лучей. Аналогичные метаморфозы происходят со светом и частицами, движущимися через дискретное пространство, описываемое спиновой сетью.
К сожалению, величина упомянутых эффектов пропорциональна отношению длины Планка к длине волны. Для видимого света оно не превышает 10 -28 , а для космических лучей с наибольшей энерги ей составляет порядка одной миллиардной. Иными словами, зернистость структуры пространства чрезвычайно слабо сказывается практически на любом наблюдаемом излучении. Но чем большее расстояние прошел свет, тем сильнее заметны последствия дискретности спиновой сети. Современная аппаратура позволяет нам регистрировать излучение гамма-всплесков, расположенных в миллиардах световых лет (см. статью «Ярчайшие взрывы во Вселенной», «В мире науки», №4,2003 г.).
Опираясь на теор ию петлевой квантовой гравитации, Родольфо Гамбини (Rodolfo Gambini) и Джордж Пуллин (Jorge Pullin) установили, что фотоны различных энерги й должны перемещаться с несколько разными скоростями и достигать наблюдателя в разное время (см. рис. внизу). Спутниковые наблюдениях гамма-всплесков помогут нам проверить это. Точность современных приборов в 1 000 раз ниже необходимой, но уже в 2006 г. будет запущена спутниковая обсерватория GLAST, прецизионное оборудование которой позволит провести долгожданный эксперимент.
Нет ли здесь противоречия с теор ией относительности, в которой постул ируется постоянство скорости света? Вместе с Джованни Амелино-Камелиа (Giovanni Amelino-Camelia) и Хояо Магуэйо (Joao Magueijo) мы разработали модифицированные версии теор ии Эйнштейна, которые допускают существование фотонов высокой энерги и, движущихся с разными скоростями. В свою очередь постоянство скорости относится к фотонам низких энерги й, т.е. к длинноволновому свету.
Другое возможное проявление дискретности пространства-времени связано с космическими лучами очень высокой энерги и. Более 30 лет назад ученые установили, что протоны космических лучей с энерги ей более 3*10 19 эВ должны рассеиваться на космическом микроволновом фоне, заполняющем пространство, и поэтому никогда не достигнут Земли. Тем не менее в японском эксперименте AGASA было зарегистрировано более 10 событий с космическими лучами даже большей энерги и. Оказалось, что дискретность пространства повышает энерги ю, требуемую для реакции рассеивания, и позволяет высокоэнергетическим протонам навещать нашу планету. Если наблюдения японских ученых подтвердятся, а другое объяснение не будет найдено, то можно будет считать, что дискретность пространства засвидетельствована экспериментально.

Космос

Теория петлевой квантовой гравитации заставляет нас по-новому взглянуть на происхождение Вселенной и помогает представить, что происходило сразу после Большого взрыва. В соответствии с общей теор ией относительности в истории мироздания был самый первый, нулевой момент времени, что не согласуется с квантовой физикой. Расчеты, проведенные Мартином Боджовальдом (Martin Bojowald) на основании теор ии петлевой о квантовой гравитации, указывают, что Большой взрыв фактически был Большим отскоком, так как до него Вселенная быстро сжималась. Теоретики уже работают над новыми моделями ранней стадии развития Вселенной, которые вскоре можно будет проверить в космологических наблюдениях. Не исключено, что нам с вами еще посчастливится узнать, что же происходило до Большого взрыва.
Не менее серьезно стоит вопрос о космологической постоянной: положительна или отрицательна плотность энерги и, пронизывающей «пустое» пространство? Результаты наблюдения реликтового фона и далеких сверхновых свидетельствуют о том, что темная энерги я существует. Более того, она положительна, поскольку Вселенная расширяется с ускорением. С точки зрения теор ии петлевой квантовой гравитации, здесь нет никакого противоречия: еще в 1990 г. Хидео Кодама (Hideo Kodama) составил уравнения, точно описывающие квантовое состояние Вселенной с положительной космологической постоянной.
До сих пор еще не решен целый ряд вопросов, в том числе чисто технических. Какие коррективы следует вносить в частную теор ию относительности при чрезвычайно высоких энерги ях (если вообще следует)? Поможет ли теор ия петлевой квантовой гравитации доказать, что различные силы, включая тяготение, являются аспектами единственного фундаментального взаимодействия?
Быть может, петлевая квантовая гравитация - это действительно квантовая общая теор ия относительности, потому что в ее основе нет никаких дополнительных предположений, кроме основных принципов квантовой механики и теор ии Эйнштейна. Вывод о дискретности пространства-времени, описываемого спиновой пеной, следует непосредственно из самой теор ии, а не вводится как постул ат.
Однако все, о чем я здесь рассуждал, - это теор ия. Возможно, пространство на самом деле гладко и непрерывно в любых, сколь угодно малых масштабах. Тогда физикам придется ввести дополнительные радикальные постул аты, как в случае теор ии струн. А поскольку в конечном счете все решит эксперимент, у меня есть хорошие новости - ситуация может проясниться в ближайшее время.

Дополнительная литература:

  • Three Roads to Quantum Gravity. Lee Smolin. Basic Books, 2001.
  • The Quantum of Area? John Baez. Nature, vol.421, pp. 702-703; February 2003.
  • How Far Are We from the Quantum Theory of Gravity? Lee Smolin. March 2003. Препринт на сайте http://arxiv.org/hep-th/0303185
  • Welcome to Quantum Gravity. Special Section, Physics World, Vol.16, No.11, pp. 27-50; November 2003.
  • Loop Quantum Gravity. Lee Smolin. Доступно на сайте http://www.edge.org/3rd_culture/smolin03/smolin03_index.html

    ГЛАВНЫЙ ВЫВОД теор ии петлевой квантовой гравитации относится к объемам и площадям. Рассмотрим область пространства, ограниченную сферической оболочкой В (см. сверху). В соответствии с классической (неквантовой) физикой ее объем может выражаться любым действительным положительным числом. Однако, согласно теор ии петлевой квантовой гравитации, существует отличный от нуля абсолютный наименьший объем (примерно равный кубу длины Планка, т.е. 10 99 см 3), а значения больших объемов представляют собой дискретный ряд чисел. Аналогично, есть ненулевая минимальная площадь (примерно квадрат длины Планка или 10 66 см 2) и дискретный ряд допустимых площадей большего размера. Дискретные спектры допустимых квантовых площадей (слева) и квантовых объемов (в центре) в широком смысл е похожи на дискретные квантовые уровни энерги и атома водорода (справа).


    ДИАГРАММЫ, НАЗЫВАЕМЫЕ СПИНОВЫМИ СЕТЯМИ, используются для представления квантовых состояний пространства при минимальном масштабе длины. Например, куб (а) - это объем, окруженный шестью квадратными гранями. Соответствующая спиновая сеть (b) содержит точку (узел), представляющую объем, и шесть линий, изображающих грани. Число возле узла указывает величину объема, а число возле линии - площадь соответствующей грани. В рассматриваемом случае объем равен восьми кубическим единицам Планка, а каждая из граней имеет площадь в четыре квадратные единицы Планка. (Правила петлевой квантовой гравитации ограничивают допустимые значения объемов и площадей определенными величинами: у линий и в узлах могут располагаться лишь определенные комбинации чисел.)
    Если на верхней грани куба помещена пирамида (с), то линия, представляющая эту грань в спиновой сети, должна соединять узел куба с узлом пирамиды (d). Линии, соответствующие четырем свободным граням пирамиды и пяти свободным граням куба, должны выходить из соответствующих узлов. (Для упрощения схемы числа опущены.)
    Вообще в спиновой сети один квант площади изображается одной линией (е), а площадь, составленная из многих квантов, обозначается многими линиями (f). Аналогично один квант объема изображается одним узлом (g), тогда как больший объем содержит много узлов (h), Так, объем внутри сферической оболочки задается суммой всех заключенных в ней узлов, а площадь поверхности равна сумме всех линий, проходящих сквозь границу области.
    Спиновые сети более фундаментальны, чем конструкции из многогранников: любое сочетание полиэдров можно изобразить соответствующей диаграммой, но некоторые правильные спиновые сети представляют такие комбинации объемов и площадей, которые невозможно составить из многогранников. Такие спиновые сети возникают, когда пространство искривляется сильным гравитационным полем или квантовыми флуктуациями геометрии в планковских масштабах.

    ИЗМЕНЕНИЕ ФОРМЫ пространства при перемещении в нем материи и энерги и и при прохождении через него гравитационных волн изображается дискретными перестройками, шагами спиновой сети. На рис. а связанная группа из трех квантов объема сливается в один; возможен и обратный процесс. На рис. b два объема разделяют пространство и соединяются с соседними объемами иным способом. При изображении в виде полиэдров два многогранника объединяются по их общей грани, а затем расщепляются, как при раскалывании кристаллов по другой плоскости. Такие шаги в спиновой сети происходят не только при больших изменениях геометрии пространства, но и при непрерывных квантовых флуктуациях в планковском масштабе.
    Другой способ изображения шагов заключается в добавлении к диаграмме еще одной размерности - времени. В результате получается спиновая пена (с). Линии спиновой сети становятся плоскостями, а узлы превращаются в линии. Срез спиновой пены в определенный момент времени представляет собой спиновую сеть. Сделав ряд таких срезов, мы получим кадры фильма, повествующего о развитии спиновой сети во времени (d). Но обратите внимание, что эволюция, которая на первый взгляд кажется плавной и непрерывной, на самом деле идет скачками. Все спиновые сети, содержащие оранжевую линию (первые три кадра), отображают в точности одну и ту же геометрию пространства, Длина линий не имеет значения -для геометрии важно лишь то, как соединяются линии и каким числом отмечена каждая из них. Именно этим и определяется взаимное расположение и величина квантов объема и площади. Так, на рис, d в течение трех первых кадров геометрия остается постоянной - 3 кванта объема и 6 квантов площади. Затем пространство изменяется скачкообразно: остается 1 квант объема и 3 кванта площади, как показано на последнем кадре. Таким образом, время, определяемое спиновой пеной, изменяется не непрерывно, а последовательностью внезапных дискретных шагов.
    И хотя для наглядности такие последовательности показаны как кадры фильма, правильнее рассматривать эволюцию геометрии как дискретное постукивание часов. При одном «тике» оранжевый квант площади есть; при следующем - он исчез: фактически его исчезновение и определяет «тик». Интервал между последовательными «тиками» примерно равен времени Планка (10 -43 с), но между ними время не существует; не может быть никакого «между», так же как нет воды между двумя соседними молекулами Н 2 O.

    КОГДА В МИЛЛИАРДАХ световых лет от нас происходит гамма-всплеск, мгновенный взрыв порождает гигантское количество гамма-лучей. В соответствии с теор ией петлевой квантовой гравитации фотон, движущийся по спиновой сети, в каждый момент времени занимает несколько линий, т.е. некоторое пространство (в реальности на квант света приходится очень много линий, а не пять, как показано на рисунке). Дискретная природа пространства заставляет гамма-лучи более высокой энерги и перемещаться немного быстрее. Разница ничтожна, но в ходе космического путешествия эффект накапливается миллиардами лет. Если возникшие при всплеске гамма-лучи разных энерги й прибывают на Землю в разные моменты времени, то это свидетельствует в пользу теор ии петлевой квантовой гравитации, На 2006 г. запланирован запуск спутника GLAST, на борту которого будет установлена достаточно чувствительная аппаратура, чтобы обнаружить дисперсию гамма-излучения.

  • Экология познания: «Я просто думаю, что в струнной теории произошло слишком много хороших вещей, чтобы она была совершенно неправильной. Люди не очень хорошо ее понимают, но я просто не верю в гигантский космический замысел, который создал

    «Я просто думаю, что в струнной теории произошло слишком много хороших вещей, чтобы она была совершенно неправильной. Люди не очень хорошо ее понимают, но я просто не верю в гигантский космический замысел, который создал эту невероятную вещь, и чтобы она не имела ничего общего с реальным миром», - сказал однажды Эдвард Уиттен.

    Безо всяких сомнений, с математической точки зрения нет недостатка в невероятных, прекрасных и элегантных теориях. Но не все они подходят для нашей физической Вселенной. Кажется, что на каждую блестящую идею, которая точно описывает, что мы можем наблюдать и измерить, приходится по меньшей мере одна блестящая идея, которая пытается описать те же вещи, но остается в корне неверной. На прошлой неделе мы задались вопросом, который сводится к примерно следующей сути.

    Квантовая гравитация. Мы хотели бы знать, имеется ли какой-нибудь прогресс в этой области за последние пять-десять лет. Нам, обычным смертным, кажется, что эта сфера малость подзастряла, а теория струн начала падать в забытие, поскольку ее сложно проверить и у нее имеется 10^500 возможных решений. Правда ли это, или же где-то за кулисами протекает некий прогресс, на который пресса просто не обращает внимания?

    Во-первых, стоит провести большую разделительную черту между идеей квантовой гравитации, решением теории струн (или предлагаемым решением) и другими альтернативами.

    Начнем со Вселенной, которую мы знаем и любим. С одной стороны, есть общая теория относительности, наша теория гравитации. Она утверждает, что вместо того, чтобы быть простым действием на расстоянии, как завещал Ньютон, когда все массы во всех местах оказывают силы друг на друга обратно пропорционально квадрату расстояния между ними, в ее основе лежит более тонкий механизм.

    Масса, как установил Эйнштейн с принципом эквивалентности и E=mc^2 в 1907 году, была одной из форм энергии во Вселенной. Эта энергия, в свою очередь, искривляет саму ткань пространства-времени, изменяя путь движения всех объектов и изменяя то, что наблюдатель мог наблюдать в виде картезианской сетки. Объекты не ускоряются за счет невидимой силы, а скорее путешествуют по пути, определяемому влиянием всех различных форм энергии во Вселенной.

    Это гравитация.

    С другой стороны, у нас есть другие законы природы: квантовые. Есть электромагнетизм, за который отвечают электрически заряженные частицы, их движение и который описывается переносчиком силы фотоном, который выступает посредником при этих взаимодействиях и дарит нам явления, которые мы связываем с электростатикой и магнетизмом. Есть также две ядерных силы: слабая ядерная сила, ответственная за явления вроде радиоактивного распада, и сильная ядерная сила, которая удерживает атомные ядра вместе и позволяет существовать протонам и нейтронам.

    Расчеты для этих сил обычно происходят в плоском пространстве-времени, с которого каждый студент начинает изучение квантовой теории поля. Но этого недостаточно, когда мы присутствуем в искривленном пространстве, как того диктует общая теория относительности.

    «Итак, - скажете вы, - мы просто будем проводить вычисления нашей теории поля на фоне искривленного пространства!». Это известно как полуклассическая гравитация, и этот тип вычислений позволяет нам рассчитывать вещи вроде излучения Хокинга. Но даже это имеется только на горизонте самой черной дыры, а не там, где гравитация будет во всей своей красе. Есть много физических случаев, в которых нам пригодилась бы квантовая теория гравитации, и все они связаны с гравитационной физикой на мельчайших масштабах, на крошечных дистанциях.

    Что, к примеру, происходит в центральных районах черных дыр? Вы можете подумать, мол, «о, там же сингулярность», но сингулярность - это не столько точка с бесконечной плотностью, сколько случай, где математический инструмент общей теории относительности выдает бессмысленные ответы на вопросы о потенциалах и силах. Что происходит, когда электрон проходит через двойную щель? Проходит ли гравитационное поле через обе щели? Или через одну? Общая теория относительности ничего не говорит на этот счет.

    Считается, что должна быть квантовая теория гравитации, которая объяснит эти и другие проблемы, присущие в «гладкой» теории гравитации вроде ОТО. Для того чтобы объяснить, что происходит на малых дистанциях в присутствии гравитационных источников - или масс, - нам нужна квантовая, дискретная, а значит, и построенная на частицах теория гравитации.

    Благодаря свойствам самой ОТО, что-то мы уже знаем.

    Известные квантовые силы определяются действием частиц, известных как бозоны, или частицы с целым спином. Фотоны определяют электромагнитную силу, W- и Z-бозоны выступают посредниками для слабой ядерной силы, а глюоны - для сильного ядерной силы. У всех этих частиц спин равен 1, причем для массивных частиц спин может принимать значение -1, 0 или +1, тогда как у безмассовых частиц (вроде глюонов и фотонов) он может принимать значение только -1 или +1.

    Бозон Хиггса тоже является бозоном, только не выступает посредником для сил и обладает спином 0. Насколько мы знаем гравитацию - ОТО является тензорной теорией гравитации - ее посредником должна выступать безмассовая частица со спином 2, а значит ее спин может принимать значение -2 или +2 только.

    Получается, мы что-то знаем о квантовой теории гравитации еще до попытки сформулировать ее. Мы знаем это, поскольку какой бы ни была квантовая теория гравитации, она должна быть в соответствии с ОТО, когда мы имеем дело с не самыми малыми дистанциями до массивных частиц или объектов, равно как и ОТО должна сводиться к ньютоновской гравитации в режиме слабого поля.

    Большой вопрос, конечно, как это сделать. Как квантовать гравитацию, чтобы она была корректна (в описании реальности), соотносилась с ОТО и КТП и приводила к вычисляемым предсказаниям новых явлений, которые могут быть наблюдаемы, измеряемы или проверямы.

    Ведущий претендент, как вы знаете, это теория струн.

    Теория струн - интереснейшее поле, которое включает все стандартные модели полей и частиц, фермионы и бозоны. Она включает 10-мерную тензор-скалярную теорию гравитации: с 9 пространственными и 1 временным измерением и параметром скалярного поля. Если мы уберем шесть из этих пространственных измерений (через не до конца понятный процесс, который люди называют компактификацией) и позволим параметру (ω), который определяет скалярное взаимодействие, уйти в бесконечность, мы сможем восстановить ОТО.

    Однако у теории струн есть целый ряд феноменологических проблем. Одна из них заключается в том, что из теории вытекает огромное число новых частиц, в том числе и все суперсимметричные, которых мы до сих пор не обнаружили. Она утверждает, что нет необходимости в «свободных параметрах», которыми обладает Стандартная модель (для масс частиц), но заменяет эту проблему еще худшей. Когда мы говорим о 10^500 возможных решениях, эти решения касаются ожидаемых значений струнных полей, и нет никакого механизма восстановить их; чтобы струнная теория работала, вам придется отказаться от динамики и просто сказать, что «она должна была быть выбрана антропно».

    Впрочем, струнная теория - не единственный игрок на этом поле.

    Петлевая квантовая гравитация

    ПКГ представляте собой интересный взгляд на проблему: вместо того чтобы пытаться квантовать частицы, ПКГ утверждает, что само пространство является дискретным. Как обычно представляют гравитацию: натянутая простыня с шаром для боулинга в центре. Мы также знаем, что обычно простынь квантуется, то есть состоит из молекул, которые состоят из атомов, которые состоят из ядер (кварков и глюонов) и электронов.

    Пространство может быть таким же! Поскольку оно выступает в качестве ткани, то состоит из конечных квантованных элементов. И, возможно, соткано из «петель», откуда и берется ее название. Соедините эти петли вместе, и вы получите сеть, представляющую квантовое состояние гравитационного поля. Согласно этой картине, квантуется не только материя, но и само пространство. Эта научная область до сих пор активно разрабатывается.

    Асимптотически безопасная гравитация

    Асимптотическая свобода была разработана в 1970-х годах, чтобы объяснить необычный характер сильного взаимодействия: это была очень слабая сила на чрезвычайно коротких расстояниях, которая становилась сильнее по мере того, как заряженные частицы расходились дальше и дальше. В отличие от электромагнетизма, который имел небольшую константу взаимодействия, у сильного взаимодействия она была большая. Из-за некоторых интересных свойств квантовой хромодинамики, если вы связываетесь с нейтральной (цветной) системой, сила взаимодействия быстро падает. Это можно было объяснить физическими размерами барионов (протонов и нейтронов, например) и мезонов (пионов, к примеру).

    Асимптотическая свобода, с другой стороны, решила фундаментальную проблему, связанную с этим: вам нужны не малые взаимодействия, связи (или связи, которые стремятся к нулю), а, скорее, связи, которые просто будут конечными при высокоэнергетическом пределе. Все константы связи меняются с энергией, и асимптотическая свобода ставит высокоэнергетическую неподвижную точку для константы (технически, для группы ренормировки, из которой извлекается константа связи), а все остальное можно рассчитывать для низких энергий.

    Во всяком случае такова идея. Мы выяснили, как делать это для измерений 1 + 1 (одно пространственное и одно временное), но не для 3 + 1. Однако прогресс движется, во многом благодаря Кристофу Веттериху, который издал две грандиозных работы в 90-х годах. Не так давно Веттерих использовал асимптотическую свободу - всего шесть лет назад, - чтобы рассчитать предсказание массы бозона Хиггса еще перед тем, как БАК нашел его. Результат же?

    Удивительно, но его предсказания идеально совпали с находками БАК. Это настолько прекрасное предсказание, что, если асимптотическая безопасность верна и массы топ-кварка, W-бозона и бозона Хиггса установлены окончательно, для стабильной работы вплоть до планковских величин физике не понадобятся другие фундаментальные частицы.

    Хотя асимптотически безопасной гравитации не уделяют много внимания, она остается весьма привлекательной и многообещающей теорией, как и теория струн: успешно квантует гравитацию, сводит ОТО до предела низких энергией и остается УФ-конечной. Кроме того, она обходит теорию струн по одному параметру: в ней нет целой горы нового материала, который мы пока не можем доказать.

    Причинная динамическая триангуляция

    Эта идея довольно нова и была разработана в 2000 году Ренатой Лолл в коллаборации с другими учеными. Она сходится с петлевой квантовой гравитацией в том, что пространство дискретно, но в первую очередь озабочена тем, как это пространство развивается. Одно из интересных свойств этой идеи в том, что время тоже должно быть дискретно. В итоге мы получаем четырехмерное пространство-время в настоящем времени, но на очень высоких энергиях и малых расстояниях (в планковских масштабах) оно проявляется в виде двумерной структуры. В ее основе лежит математическая структура под названием симплекс, которая является n-мерным обобщением треугольника. 2-симплекс - это треугольник, 3-симплекс - тетраэдр, и так далее. Одна из «прекрасных» фишек этого проявляется в виде причинности - известного многим понятия - которая сохраняется в причинной динамической триангуляции. Возможно, она сможет объяснить гравитацию, но непонятно на 100%, сможет ли в эти рамки уместиться Стандартная модель элементарных частиц.

    Возникающая (индуцированная) гравитация

    Возможно, наиболее спорной из последних теорий квантовой гравитации является энтропийная гравитация, предложенная Эриком Верлинде в 2009 году, согласно модели которой гравитация является не фундаментальной силой, а скорее возникает как явление, связанное с энтропией. На самом деле корни возникающей гравитации уходят к открывателю условий образования асимметрии материи-антиматерии, Андрею Сахарову, который предложил эту идею еще в 1967 году. Работа по-прежнему находится в зачаточном состоянии, но за последние 5-10 лет на этом поле имеется некоторый прогресс.

    Вот что у нас на сегодняшний день есть по квантовой гравитации. Мы уверены, что без нее не поймем работу Вселенной на фундаментальном уровне, но понятия не имеем, в каком направлении из представленных пяти (и других) движение будет верным. опубликовано