Мейоз деление созревших половых клеток. Мейоз - деление созревания половых клеток. Мейоз – основа полового размножения

Вопрос 1. Опишите строение половых клеток.

Половые клетки (гаметы) бывают двух ти­пов. Женские гаметы — это яйцеклетки, муж­ские — сперматозоиды. Яйцеклетки круп­ные, округлые, неподвижные; они могут со­держать запас питательных веществ в виде желтка (особенно много желтка в икринках рыб, яйцах пресмыкающихся и птиц). Спер­матозоиды — мелкие подвижные клетки, которые, как правило, имеют головку, шейку и хвост-жгутик, обеспечивающий их подвижность. В шейке располагаются митохондрии, в головке — ядро, содержащее хромосомы. У се­менных растений мужские гаметы переносят­ся к яйцеклеткам с помощью особой структу­ры — пыльцевой трубки. В связи с эти они не имеют жгутика и называются спермиями.

Вопрос 2. От чего зависит размер яйцеклеток?

Размер яйцеклеток зависит от наличия или отсутствия в них запаса питательных веществ. Яйцеклетки, содержащие много желтка (на­пример, у птиц), имеют размеры от нескольких миллиметров до 15 см. Яйцеклетки, почти не содержащие запаса питательных веществ, зна­чительно мельче. В свою очередь, количество желтка определяется тем, развивается ли оп­лодотворенная яйцеклетка самостоятельно, либо заботу о зародыше берет на себя материн­ский организм. В последнем случае какой-либо значительный запас питания не нужен (у плацентарных млекопитающих размер яйце­клеток составляет всего 0,1-0,3 мм).

Вопрос 3. Какие периоды выделяют в процессе развития половых клеток?

В ходе развития половых клеток выделяют:

период размножения — клетки стенок половых желез активно делятся митозом, об­разуя незрелые половые клетки (клетки-пред­шественницы); у мужчин этот процесс начина­ется с наступлением половой зрелости и идет почти всю жизнь, у женщин завершается еще в эмбриональном периоде;
период роста — происходит увеличение цитоплазмы клеток-предшественниц, накоп­ление необходимых питательных и строитель­ных веществ, удвоение ДНК; этот процесс луч­ше выражен у яйцеклеток;
период созревания — происходит мейотическое деление клеток-предшественниц, при­водящее к образованию из одной диплоидной клетки четырех гаплоидных; при сперматоге­незе все четыре клетки одинаковые, в даль­нейшем они превращаются в зрелые спермато­зоиды; в овогенезе формируются три мелкие клетки (направительные тельца) и одна круп­ная (будущая яйцеклетка).

Вопрос 4. Расскажите, как протекает период созревания (мейоз) в процессе сперматогенеза; овогенеза.

В процессе сперматогенеза клетка-пред­шественница претерпевает два последователь­ных деления. В результате первого деления об­разуются две клетки, несущие гаплоидный на­бор хромосом (каждая хромосома содержит по две хроматиды). Перед вторым делением удвое­ния генетического материала не происходит. В результате образуются четыре клетки — буду­щие сперматозоиды, которые постепенно приоб­ретают зрелый вид и становятся подвижными.

В овогенезе профаза I мейоза завершается в эмбриональном периоде; дальнейшие стадии идут лишь после полового созревания. Раз в месяц одна из клеток продолжает развитие. В результате первого деления образуется круп­ная клетка-предшественница яйцеклетки и мелкое полярное тельце, которые вступают во второе деление. На стадии метафазы II пред­шественница яйцеклетки овулирует — выхо­дит из яичника и попадает в брюшную полость, а затем в яйцевод. Второе мейотическое деле­ние завершается, только если произошло опло­дотворение. В противном случае так и не сфор­мировавшаяся женская гамета погибает и вы­водится из организма. Полярные тельца также через некоторое время погибают. Их роль — удаление избытка генетического материала и перераспределение питательных веществ (практически все они достаются яйцеклетке).

Вопрос 5. Перечислите отличия мейоза от ми­тоза.

Мейоз, в отличие от митоза, состоит из двух делений. Профаза I гораздо продолжи­тельнее профазы митоза. На этой стадии мейо­за происходит конъюгация гомологичных хро­мосом; они могут обмениваться участками, что приводит к перекомбинации наследствен­ной информации. Между первым и вторым де­лением мейоза удвоения генетического мате­риала не происходит.

Принципиальным отличием мейоза являет­ся то, что в анафазе I к разным полюсам клетки расходятся не хроматиды (как в анафазе мито­за), а гомологичные хромосомы. Именно в этот момент происходит превращение диплоидного хромосомного набора в гаплоидный.

При таком расхождении в формирующихся клетках образуется случайная комбинация материнских и отцовских хромосом, что опре­деляет генетическое разнообразие будущих га­мет. Иными словами, в результате мейоза воз­никают генетически различающиеся клетки, в то время как после митоза все дочерние клет­ки идентичны исходной материнской.

Вопрос 6. В чем заключается биологический смысл и значение мейоза?

Биологический смысл мейоза заключается в поддержании постоянства числа хромосом в ряду поколений. Значение мейоза состоит в том, что он создает возможность полового раз­множения, поскольку именно в результате мейо­за образуются гаплоидные гаметы. В ходе опло­дотворения такие гаметы сливаются, что ведет к восстановлению диплоидности. В отсутствие мейоза слияние диплоидных клеток приводило бы к удвоению числа хромосом у каждого по­следующего поколения. К тому же, благодаря перекомбинации участков гомологичных хро­мосом в профазе I, а также случайному расхож­дению хромосом в анафазе I, увеличивается ге­нетическое разнообразие потомства.

Половые клетки (гаметы) развиваются в половых (генеративных) органах и играют важнейшую роль: обеспечивают передачу наследственной информации от родителей к потомкам. При половом размножении в результате оплодотворения происходит слияние двух половых клеток (мужской и женской) и образование одной клетки - зиготы , последующее деление которой приводит к развитию дочернего организма.

Обычно в ядре клетки содержатся два набора хромосом - по одному от одного и другого родителя - 2n (латинской буквой "n" обозначают одинарный набор хромосом). Такая клетка называется диплоидной (от греч. diploos - "двойной" и eidos - "вид"). Можно предположить, что при слиянии двух ядер во вновь образовавшейся клетке (зиготе) будут находиться уже не два, а четыре набора хромосом, которые при каждом последующем появлении зигот будут снова удваиваться. Представьте себе, какое количество хромосом накопилось бы тогда в одной клетке! Но такого в живой природе не происходит: число хромосом у каждого вида при половом размножении остается постоянным. Связано это с тем, что половые клетки образуются путем особого деления. Благодаря этому в ядро каждой половой клетки попадают не две (2n), а только одна пара хромосом (1n), т. е. половина из того, что было в клетке до ее деления. Клетки с одинарным набором хромосом, т. е. содержащие только половину каждой пары хромосом, называются гаплоидными (от греч. haploos - "простой", "одиночный" и eidos - "вид").

Процесс деления половых клеток, в результате которого в ядре оказывается вдвое меньше хромосом, называют мейозом (греч. meiosis - "уменьшение"). Уменьшение вдвое числа хромосом в ядре (так называемая редукция) происходит при формировании и мужских, и женских половых клеток. При оплодотворении путем слияния половых клеток в ядре зиготы вновь создается двойной набор хромосом (2n).

Мейоз имеет большое значение в живом мире. В процессе мейоза (в отличие от митоза) образуются дочерние клетки, которые содержат в два раза меньше хромосом, чем родительские клетки, но благодаря взаимодействию хромосом отца и матери всегда обладают новыми, неповторимыми комбинациями хромосом. Эти комбинации у потомства выражаются в новых сочетаниях признаков. Появляющееся множество комбинаций хромосом увеличивает возможность вида вырабатывать приспособления к изменяющимся условиям окружающей среды, что очень важно для эволюции.

С помощью мейоза образуются половые клетки с меньшим набором хромосом и с качественно иными генетическими свойствами, чем у родительских клеток.

Мейоз, или редукционное деление, - это сочетание двух своеобразных этапов деления клетки, без перерыва следующих друг за другом. Их называют мейозом I (первое деление) и мейозом II (второе деление). Каждый этап имеет несколько фаз. Названия фаз такие же, как фаз митоза. Перед делениями наблюдаются интерфазы. Но удвоение ДНК в мейозе происходит только перед первым делением.

В первой интерфазе (предшествующей первому делению мейоза) наблюдается увеличение размеров клетки, удвоение органоидов и удвоение ДНК в хромосомах.

Первое деление (мейоз I) начинается профазой I , во время которой удвоенные хромосомы (имеющие по две хроматиды) хорошо видны в световой микроскоп. В этой фазе одинаковые (гомологичные ) хромосомы, но происходящие из ядер отцовской и материнской гамет, сближаются между собой и "слипаются" по всей длине в пары. Центромеры (перетяжки) гомологичных хромосом располагаются рядом и ведут себя как единое целое, скрепляя четыре хроматиды. Такие соединенные между собой гомологичные удвоенные хромосомы называют парой или бивалентом (от лат. bi - "двойной" и valens - "сильный").

Гомологичные хромосомы, составляющие бивалент, тесно соединяются между собой в некоторых точках. При этом может происходить обмен участками нитей ДНК, в результате которого образуются новые комбинации генов в хромосомах. Этот процесс называют кроссинговером (англ. crossingover - "перекрест"). Кроссинговер может приводить к перекомбинации больших или маленьких участков гомологичных хромосом с несколькими генами или частей одного гена в молекулах ДНК.

Благодаря кроссинговеру в половых клетках оказываются хромосомы с иными наследственными свойствами в сравнении с хромосомами родительских гамет.

Явление кроссинговера имеет фундаментальное биологическое значение, так как увеличивает генетическое разнообразие в потомстве.

Сложностью процессов, происходящих в профазе I (в хромосомах, ядре), обусловливается наибольшая продолжительность этого этапа мейоза.

^ III. Мейоз. Образование половых клеток.


    1. Мейоз – основа полового размножения.

    2. I мейотическое деление.

    3. II мейотическое деление.

    4. Биологическое значение мейоза.

1. Мейоз – основа полового размножения.

Специфическое деление клеток, при котором обра­зуются половые клетки – мейоз .

Видовое постоянство числа хромосом в клетках поддержива­ется благодаря митозу, которому предшествует синтез ДНК и образование двух хроматид в каждой хромосоме. Как же поддер­живается постоянство числа хромосом при половом размноже­нии, ведь все соматические клетки содержат диплоидное, а соз­ревшие половые клетки имеют только половинное, т.е. гаплоид­ное, число хромосом, следовательно, и половинное количество ДНК?

Уменьшение числа хромосом вдвое происходит в процессе созревания половых клеток. Оба деления, которые происходят в зоне созревания, представляют собой два деления мейоза.

Оба деления мейоза включают те же фазы, что и митоз: про­фазу, метафазу, анафазу, телофазу. Перед первым делением мей­оза в половых клетках, находящихся в зоне созревания, происхо­дит синтез ДНК, а значит, и удвоение хромосом, т.е. образова­ние двух хроматид.

^ 2. I мейотическое деление.

В профазе первого деления мейоза происходит спирализация хромосом. В конце профазы, когда спирализация заканчивается, хромосомы приобретают характерные для них форму и размеры. Хромосомы каждой пары, т.е. гомологичные, соединяются друг с другом по всей длине с образованием бивалентов и скручиваются. Этот процесс соединения гомологичных хромосом носит название конъюгации.

Во время конъюгации между некоторыми гомологичными хро­мосомами происходит процесс обмена участками – генами, что означает и обмен наследственной информацией. Обмен идентичными участками гомологичных хромосом – кроссинговер . Процесс кроссинговера носит случайный характер. После конъюгации и кроссинговера гомо­логичные хромосомы отделяются друг от друга. Растворяется ядерная оболочка, исчезает ядрышко, формируется веретено деления.

Когда хромосомы полностью разъединяются, заканчивается образование веретена деления, наступает метафаза мейоза и биваленты (пара хромосом) располагаются в плоскости экватора.

К каждой из хромосом прикрепляются нити веретена деления. Затем наступает анафаза мейоза, и к полюсам клетки отходят не половинки каждой хро­мосомы, включающие одну хроматиду, как при митозе, а целые хромосомы, каждая из которых состоит из двух хроматид. Сле­довательно, в дочернюю клетку попадает только одна из каждой пары гомологичных хромосом.

В телофазу образуется две клетки с уменьшенным гаплоидным набором хромосом.

В результате I мейотического деления наблюдается уменьшение вдвое числа хромосом в клетке, образование гаплоидных предшественников гамет, но их хромосомы состоят из двух хроматид, т.е. имеют удвоенное количество ДНК.

^ 3. II мейотическое деление.

Вслед за первым делением наступает второе деление мейоза, причем этому делению не предшествует синтез ДНК

Ведь еще при первом делении мейоза к полюсам дочерних клеток разошлись целые хромосомы, каждая из которых имеет по две хроматиды. После короткой профазы хромосомы (иногда профаза отсутствует), состоящие из двух хроматид, в метафазе второго деления располагаются в плоскости экватора и прикрепляются к нитям веретена. Процесс идёт сразу в двух дочерних клетках. В анафа­зе к противоположным полюсам клетки расходятся хроматиды и в каждой дочерней клетке оказывается по одной дочерней хромосоме. Количество ДНК и хромосом в дочерних клетках выравнивается. Таким образом, в сперматозоидах и яйцеклетках число хромосом уменьшается вдвое.

В телофазу образуется четыре дочерние клетки, формируются ядра, образуются перегородки (у растительных клеток) или перетяжки (у животных клеток).

В результате II мейотического деления образуются четыре клетки с гаплоидным набором – однохроматидные хромосомы или гаметы.

^ 4. Биологическое значение мейоза.

Биологическая сущность мейоза состоит в уменьшении числа хромосом вдвое и образова­нии гаплоидных гамет. При слиянии половых клеток образуется диплоиная зигота.

Мейоз обеспечивает постоянство кариотипа в ряду поколений организмов данного вида.

В ходе мейоза происходит перекрёст и обмен участками гомологичных хромосом. Хромосомы каждой пары расходятся в стороны случайным образом, независимо от других пар. Мейоз обеспечивает разнообразие генетического состава гамет, т.е. мейоз – основной источник разнообразия организмов данного вида.

В отдельных случаях вследствие нарушения процесса мейоза при нерасхождении гомологичных хромосом половые клетки могут иметь обе гомологичные хромосомы или вообще их не содержать. Это приводит к тяжёлым нарушениям в развитии организма, а в дальнейшем к его гибели.

Фронтальный опрос:

1. Как протекает мейоз?

2. В чем отличие мейоза от митоза?

3. Что такое конъюгация хромосом и каково ее значение?

4. Что такое кроссинговер и каково его значение?

5. Какова биологическая сущность мейоза?

^ IV. Оплодотворение. Эволюция полового размножения.


  1. Оплодотворение – определение, суть, понятие «двойного оплодотворения».

  2. Партеногенез – определение, суть.

  3. Половой диморфизм – определение, суть.

  4. Гермафродиты – определение, суть.

  5. Искусственное осеменение и трансплантация эмбрионов.

  6. Эволюция полового размножения.

      1. Оплодотворение – определение, суть, понятие «двойного оплодотворения».
Оплодотворение – процесс слияния женской и мужской гамет – клеток с гаплоидным набором хромо­сом, заканчивающийся образованием зиготы. Зигота диплоидна, т.к. она образовалась в резуль­тате слияния двух гаплоидных гамет. После оплодотворения происходит синтез ДНК, удвоение хромосом. Зигота делится путём митоза и даёт начало зародышу.

^ Суть оплодотворения: в ядре зиготы все хромосомы вновь становятся парными; в каждой паре гомологичных хромосом одна хромосома отцовская, другая – материнская. Диплоидный набор хромо­сом, характерный для соматических клеток каждого вида орга­низмов, восстанавливается при оплодотворении.

Процесс оплодотворения состоит из трёх этапов:


    1. проникновение сперматозоида в яйцеклетку;

    2. слияние гаплоидных гамет с образованием зиготы;

    3. активация зиготы к дроблению и развитию.

Биологическое значение оплодотворения. Оплодотворение бывает наружным и внутренним. Развитие женских и мужских гамет и оплодотворение происходит в женских и муж­ских половых органах. При слиянии женских и мужских гамет образуется новый организм, несущий в себе признаки матери и отца. Таким образом, в результате оплодотворения каждый раз образуется неповторимое, уникальное сочетание генов в зиготе. Генетическая неповторимость служит основой разнообразия особей внутри вида.

«^ Двойное оплодотворение». У покрытосеменных растений мужские гаметы малоподвижны и называются спермиями. Яйцеклетка неподвижна, и образование ее происходит в зародышевом мешке, рас­положенном в семяпочке. Зародышевый мешок содержит кроме гаплоидной яйцеклетки одну диплоидную клетку, которая участвует в оплодотворении и лежит в центре зародышевого мешка, и несколько других гаплоидных клеток.

Спермин развиваются в пыльцевых зернах пыльников (на тычинках). С помощью пыльцевой трубки спермии переносятся к зародышевому мешку, где происходит процесс оплодотворе­ния. В пыльцевой трубке находятся два спермия. Когда пыльцевая трубка входит в зародышевый мешок, один спермий сливается с яйцеклеткой, образуя диплоидную зиготу, из которой развивается зародыш. Второй спермий сливается с диплоидной центральной клеткой, и в результате возникает новая клетка с триплоидным ядром, т.е. в нем содержится три набора хромосом. Из нее развивается эндосперм семени. Этот универсаль­ный для всех покрытосеменных половой процесс получил назва­ние двойного оплодотворения. Он был открыт в 1898г. С. Г. Навашиным.

^ Биологическое значение двойного оплодотворения у покрыто­семенных растений заключается в том, что развитие эндосперма начинается только после того, как произойдет оплодотворение яйцеклетки. Триплоидный эндосперм покрытосеменных растений представ­ляет собой запасной питательный материал для развивающегося зародыша. Кроме того, он включает наследственные задатки материнского и отцовского организмов.

^ 2. Партеногенез – определение, суть.

Партеногенез – развитие организма из неоплодотворенного яйца. Партеногенез встречается в природе у многих видов рас­тений и животных. Например, среди растений он известен у оду­ванчиков, ястребинок. Среди животных партеногенез широко распространен у коловраток, солоноватоводных рачков артемий, у ветвистоусых пресноводных рачков дафний, тлей, пчел. В сос­таве пчелиной семьи путем партеногенеза развиваются трутни (самцы). Существует естественный (происходит в природе) или искусственный (проводится в искусственных условиях. Например, Тихомиров стимулировал развитие тутового шелкопряда; Леб – развитие морского ежа; Батайон – развитие лягушки) партеногенез.

^ 3. Половой диморфизм – определение, суть.

Половой диморфизм – явление, наблюдаемое у раздельнополых организмов, при котором самки и самцы отличаются друг от друга по внешнему виду, поведению или другим признакам. Это отражает то, что самки и самцы выполняют различные функции. Как правило, самцы чаще имеют бросающиеся в глаза признаки.

^ 4. Гермафродиты – определение, суть.

Организмы, у которых развиваются мужские и женские гаметы в одной особи – гермафродиты . Встречается у моллюсков, плоских и кольчатых червей, но может встречаться у животных и человека как патологическое состояние.

^ 5. Искусственное осеменение и трансплантация эмбрионов.

В настоящее время в практике сельского хозяйства используется искусственное осеменение – искусственное введение спермы производителя в половые пути самки. Это возможно благодаря методике консервирования спермы в замороженном виде.

В 1978г. Зафиксирован первый случай рождения ребёнка «из пробирки».

Этапы трансплантации эмбрионов:


      1. извлечение яйцеклетки из яичника оперативным путём;

      2. оплодотворение её сперматозоидом;

      3. выращивание эмбриона в пробирке;

      4. перенесение эмбриона в матку, гормонально подготовленную к имплантации зародыша.
^ 6. Эволюция полового размножения.

В ходе эволюции половое размножение претерпело определённое развитие. Сначала половые клетки были одинаковыми по величине и форме. В дальнейшем образовались макрогаметы – прототипы яйцеклетки и микрогаметы – прототипы сперматозоидов (встречаются у амёб и споровиков). Параллельно с дифференцировкой гамет происходит развитие полового диморфизма – различия в строении гамет и особей.

Фронтальный опрос:


        1. Дайте определение понятию оплодотворение. В чём суть оплодотворения?

        2. В чем сущность двойного оплодотворения цветковых растений?

        3. В чем сущность партеногенеза?

        4. В чем сущность полового диморфизма?

        5. В чем сущность гермафродитизма?

  1. В чем сущность эволюции полового размножения?

^ V. Индивидуальное развитие организма.


    1. Понятие об онтогенезе.
2. Стадия бластулы.

3. Стадия гаструлы.

4. Стадия нейрулы.

5. Временные зародышевые органы.

6. Влияние окружающей среды на развитие организма.

^ 1. Понятие об онтогенезе.

Онтогенез – процесс индивидуального развития, который начинается с оплодотворения и заканчивается гибелью организма.

В онтогенезе выделяют два периода – эмбриональный и постэмбриональный. Эмбриональный период или дородовый или эмбриогенез начинается с момента оплодотворения и заканчивается рождением. Постэмбриональный или послеродовый начинается с момента рождения и заканчивается гибелью организма.


    1. ^ Стадия бластулы.
После оплодотворения начинается эмбриональное развитие животного или растения, который завершается фор­мированием взрослого организма. Оплодотворенная яйцеклетка – зигота – претерпевает ряд быстро следующих друг за другом митотических делений, которые называются дроблением. Зигота вначале делится в продольном направлении на две одинаковые по величине клетки, называемые бластомерами . За­тем каждый из бластомеров делится также в продольном направ­лении и образуются четыре клетки. Следующее, третье деление проис­ходит в поперечном направлении, и в результате его формируют­ся восемь одинаковых клеток. В дальнейшем чередуются быстро сле­дующие друг за другом продольные и поперечные деления, кото­рые приводят к образованию большого числа клеток (бластомеров).

Яйцо ланцетника, имеющее небольшое количество желтка, подвергается дроблению полностью. У других живот­ных (птицы, рыбы) яйцо содержит много желтка и дроблению подвергается только диск цитоплазмы с ядром, а сам жел­ток не дробится.

При дроблении следующие друг за другом деления происхо­дят быстро, бластомеры не растут и их размеры по мере увели­чения числа клеток уменьшаются. В результате дробления обра­зуется шарообразный зародыш с полостью внутри – бластула . Клетки стенки бластулы располагаются в один слой. Формированием бластулы завершается период дробления и начи­нается следующий период развития, в течение которого продол­жается деление клеток и происходит образование второго, внут­реннего слоя клеток. Зародыш становится двухслойным.


    1. ^ Стадия гаструлы.
У многих многоклеточных животных внутренний слой клеток образуется путем впячивания внутрь полости бластулы клеток её стенки. Эту двух­слойную стадию развития называют гаструлой . Наружный слой клеток гаструлы называют эктодермой, внутренний – энтодермой. Образовавшаяся путем впячивания и ограничен­ная энтодермой полость представляет собой полость первично­го кишечника, открывающуюся наружу отверстием – первич­ным ртом. Эктодерму и энтодерму называют зародышевыми лис­тками .

Дальнейшее развитие первоначально двухслойной гаструлы связано с образованием третьего зародышевого листка – мезо­дермы, обособлением хорды, формированием кишечника и раз­витием центральной нервной системы.


Начальные стадии дробления яйцеклеток Развитие зародыша тритона.

лягушки (вверху) и птицы (внизу).

Видны последовательные стадии дробления 2, 4 и 8 бластомеров.

Яйцеклетка лягушки дробится на бластомеры разной величины.

В яйцеклетке птиц дробится только поверхностный участок

Активной цитоплазмы, в котором расположено ядро.


    1. Стадия нейрулы.
Деление клеток и их перемещение продолжается на следующей стадии развития зародыша – нейрула. Начинается закладка отдельных органов будущей личинки или взрослого организма.

Экто­дерма дает начало внешним покровам организма, нервной системе и связанным с ней органам чувств.

Из эндодермы развиваются ротовое и анальное отверстия, кишечник, лёгкие, печень, поджелудочная железа.

Мезодерма даёт начало хорде, мышцам, выдели­тельной системе, хрящевому и костному скелету, кровеносным сосудам, половым железам.

Ранние стадии развития ланцетника

Зародыш животных развивается как единый организм, в кото­ром все клетки, ткани и органы находятся в тесном взаимодей­ствии. Полностью все органы плода формируются к трём месяцам. Начальные стадии развития животных имеют много общего для всех организмов, что является одним из доказательств единства происхождения всех живых организмов на Земле.


    1. ^ Временные зародышевые органы.
Временные зародышевые органы прекращают существование после рождения организма. Выделяют четыре – амнион, аллантоис, хорион, желточный мешок.

^ Амнион – водная оболочка, которая окружает зародыш, защищая его от высыхания и механических повреждений. У человека это плодный пузырь.

Хорион – прилежит к скорлупе или стенке матки, пронизанный капиллярами, обеспечивая питание и дыхание зародыша.

Аллантоис – мочевой мешок, который служит для выделения продуктов обмена. Его сосудами служат пупочные вены и артерии для питания и выделения.

^ Желточный мешок – служит для питания у птиц, источник половых клеток и клеток крови у человека.


    1. Влияние окружающей среды на развитие организма.
Все стадии индивидуального развития любого организма под­вержены влиянию факторов внешней среды. К ним относится целый ряд естественных, природных факторов, среди которых можно в первую очередь назвать температуру, свет, солевой и газовый состав среды обитания, пищевые ресурсы и др.

Есть, однако, факторы, воздействие которых на индивидуаль­ное развитие не только нежелательно, но и вредно. Особенно следует сказать о таких воздействиях на развитие и функциони­рование организма человека. К числу вредных внешних факторов следует в первую очередь отнести алкогольные напитки и куре­ние.

Употребление алкогольных напитков приносит огромный вред на любом этапе индивидуального развития человека и особенно опасно в подростковом возрасте. Алкоголь губительно действует на все системы органов человека, прежде всего на центральную нервную систему, на сердце и кровеносные сосуды, на легкие, почки, систему органов движения (мышцы). Употребление даже малых доз алкоголя нарушает мыслительную деятельность чело­века, ритм движений, дыхания и деятельность сердца, приводит к многочисленным ошибкам в работе, к возникновению заболе­ваний. Например, алкоголь разрушает печень, вызывает ее пере­рождение (цирроз). Систематическое употребление алкоголя приводит к возникновению тяжелого заболевания – алкоголиз­ма, которое требует длительного специального лечения. У роди­телей–алкоголиков могут рождаться умственноотсталые и физи­чески неполноценные дети.

Фронтальный опрос:


    1. Дайте определение понятию онтогенез и охарактеризуйте его.

    2. Охарактеризуйте стадию бластулы.

    3. Охарактеризуйте стадию гаструлы.

    4. Охарактеризуйте стадию нейрулы.

    5. Охарактеризуйте временные зародышевые органы.

    6. Как сказывается влияние внешней среды на внешнее и внутреннее развитие организма?

^ VI. Постэмбриональное развитие организма.


  1. Постэмбриональное развитие.

  2. Непрямое постэмбриональное развитие.

  3. Биологическое значение личинок.

  4. Прямое постэмбриональное развитие.

  5. Рост, старение и смерть – этапы онтогенеза.

  6. Регенерация и трансплантация.

      1. Постэмбриональное развитие.
Постэмбриональный (послезародышевый) период начинается с момента выхода организма из яйцевых оболочек, а при внутриутробном развитии зародыша млекопитающих – с момента рождения. Различают два вида постэмбрионального развития: прямое, когда рождающийся организм сходен со взрослым, и непрямое, когда эмбриональное развитие приводит к образованию личинки, которая отличается от взрослого организма по многим признакам внешнего и внут­реннего строения, по характеру питания, движения и ряду других особенностей.

      1. ^ Непрямое постэмбриональное развитие.
К животным с непрямым развитием относятся кишечнопо­лостные, плоские и кольчатые черви, ракообразные, насекомые и ряд других беспозвоночных, а из позвоночных – амфибии. У этих животных из яйца развиваются личинки, которые ведут самостоятельный образ жизни, самостоятель­но питаются. Строение их более простое, чем строение взрослого организма: у них развиваются особые личиночные органы, которых нет у взрослых особей (например, у головастика лягушки – наружные жабры и хвост). Превращение личинки во взрослое животное сопровождается глубокой перестройкой внеш­него и внутреннего строения. Непрямое развитие бывает полное и неполное.

^ Полное непрямое развитие: яйцо личинка, которая по строению отличается от взрослой особи куколка взрослая особь (комнатная муха, бабочка, лягушка).

^ Неполное непрямое развитие: яйцо личинка, которая по строению похожа на взрослую особь взрослая особь (таракан).


      1. Биологическое значение личинок.
Непрямое развитие часто даёт организмам значительные преимущества:

        1. Благодаря самостоятельному питанию личинки обеспечивают развитие взрослой особи, т.к. яйцеклетки животных, которым свойственно непрямое развитие содержат небольшой запас желтка.

        2. Обычно личинка представляет стадию развития, специально приспособленную для активного питания и роста (насекомые, земноводные). Как правило, личинки и взрослые особи одного вида живут в разных условиях, т.е. занимают разные экологические ниши, и благодаря этому не конкурируют друг с другом за место и пищу.

        3. У некоторых организмов личинки способствуют распространению вида. На­пример, у многих сидячих, малоподвижных червей и моллюс­ков личинки свободно плавают и занимают новые места обитания.

      1. ^ Прямое постэмбриональное развитие.
Прямое развитие возникло в процессе эволюции у ряда бес­позвоночных животных, например у пиявок, многоножек, пауков. Большинство позвоночных животных, к числу которых относятся пресмыкающиеся, птицы и млекопитающие, имеют прямое раз­витие. Эти организмы имеют большое количество желтка в яйцеклетках и удлинённый период внутриутробного развития.

К моменту рождения организм напоминает взрослую стадию. Поэтому постэмбриональный период характеризуется ростом и приобретением состояния функциональной зрелости органов и систем.


      1. ^ Рост, старение и смерть – этапы онтогенеза.
Рост – увеличение массы и размеров развивающегося организма. Рост организма происходит в результате увеличения количества клеток, межклеточного вещества и размеров клеток. Рост регулируется генетически, однако, на него оказывают влияние и внешние условия: количество и качество пищи, свет, температура, социальные факторы, психологические воздействия.

Старение – закономерный, нарастающий во времени процесс, ведущий к снижению приспособительных возможностей организма и увеличению вероятности смерти.

^ Смерть – необратимое прекращение всех проявлений жизнедеятельности организма.


      1. Регенерация и трансплантация.
Регенерация – способность организмов восстанавливать внутриклеточные структуры, ткани и ор­ганы, разрушенные в процессе нормальной жизнедеятель­ности или в результате повреждения. Иногда к явлению ре­генерации относят восстановление целого нового организма из небольшой его части, что напоминает развитие особи во время эмбрионального развития. Различают:

^ 1. Физиологическая регенерация – это обновление клеток и органов, утрачиваемых в ходе обычной жизнедеятельности, т.е. происходящее как нормальный физиологический процесс (закономерная смена поколений клеток в эпителиях кожи, кишечника, отрастание ногтей, волос, сбрасывание и отрас­тание рогов у оленей). Отмечается суточный ритм клеточного обновления. Митотический индекс (число делящихся кле­ток на тысячу) позволяет сравнивать митотическую активность тканей.

^ 2. Репаративная регенерация – восстановительные процессы в клетках, орга­нах и тканях в ответ на повреждающие воздействия (механи­ческая травма, хирургические воздействия, ожоги, обморо­жения, химические воздействия, болезни). Живым организмам любого вида присуща способность к репаративной регенерации.

Классическим примером репаративной регенерации явля­ется регенерация гидры. Гидру можно обезглавить, ампутируя ротовой конус с щупальцами, а затем он образуется заново. Разрезая гидру на части, можно увеличить число гидр, т.к. каждая часть преобразуется в целую гидру. Значительная регенерационная способность обнаружена у представителей типов плоских и кольчатых червей, у морских звёзд.

^ Регенерация у некоторых видов беспозвоночных животных.

А – гидра; Б – кольчатый червь; В – морская звезда.

У позвоночных животных, тритонов и головастиков лягушек развиваются заново ампутированные лапки и хвосты. Это пример регенерации внешнего органа, в результате которой восстанавливаются его форма и функция, однако регенерировавший орган отличается умень­шенными размерами.

^ Регенерация конечности тритона.

1–7 – последовательные этапы регенерации соответственно

через 10, 12, 14, 18, 28, 42, 56 дней после ампутации.

Несколько иначе происходит регенерация внутренних ор­ганов. При удалении у крысы одной или двух долей печени ос­тавшиеся доли увеличиваются в размере и обеспечивают функцию в объеме, который был характерен для нормального органа. Однако форма печени при этом не восстанавливается. Процесс, при котором восстанавливаются масса и функция органа, называется регенерационной гипертрофией .

Регенерация у млекопитающих. А – регенерационная гипертрофия печени крысы: 1 – до операции, 2 – после удаления двух долей, 3 – регенерировавшая печень; Б – регенерация мышцы крысы: 1 – культи удалённой мышцы, 2 – восстановленная мышца; В – заживление кожного разреза у человека: 1 – сгусток фибрина, 2 – перемещение клеток ростового слоя, 3 – образование эпителиального пласта.

Если удалить один из парных органов, например почку или яичник, то оставшийся увеличивается в размерах и выполняет функцию в объеме двух нормальных органов. После удаления лимфатического узла или селезёнки оставшиеся лимфатические узлы увеличиваются в размерах. Такое увеличение массы и функции оставшегося органа в ответ на удаление сходного с ним называется компенса­торной заместительной гипертрофией и тоже относится к разряду восстановительных процессов. Термином «гипертрофия» в биологии и медицине обозначают уве­личение размеров органов и частей организма.

^ Внутрикле­точная регенерация – увеличение ко­личества органелл (митохондрии, рибосомы) приводящих к интенсификации энергетического и пластиче­ского обмена клеток.

Во всех случаях репаративной регенерации происходят сложные закономерные изменения структуры органов. Наи­более заметны эти изменения при восстановлении целого ор­ганизма из части. На раневой поверхности не проис­ходит значительных формообразовательных процессов, они развертываются внутри сохраненной части, в результате заново формируется целый организм первоначально раз­мером с оставшуюся часть, которая затем растёт – морфаллаксисом . При реге­нерации наружных органов наблюдается отрастание нового органа от раневой поверхности – эпиморфозом .

Различным формам регенерации после повреждения свой­ственны некоторые общие черты. Сначала имеют место за­крытие раны, гибель некоторой части оставшихся клеток, затем процесс дедифференцировки, т.е. потери клетками специфических черт строения, а затем размножение, переме­щение и снова дифференцировка клеток. Для начала процес­са регенерации большое значение имеет нарушение прежних пространственных связей и контактов между клетками. В ре­гуляции регенерационных процессов наряду с межклеточ­ными взаимодействиями большая роль принадлежит гормо­нам и влияниям со стороны нервной системы. С возрастом регенерационные возможности снижаются.

Особый интерес для медицины представляет вопрос о реге­нерационных способностях млекопитающих, к которым принадлежит и человек. Хорошо регенерируют кожа, сухожилия, кости, нервные стволы и мышцы. Для регенерации мышцы важно сохранение хотя бы небольшой ее культи, а для регенерации кости необходима надкостница. Таким образом, если создать необ­ходимые условия, то можно добиться регенерации многих внутренних органов млекопитающих и человека. Невозмож­ность у млекопитающих, отличающихся активным образом жизни, регенерации конечностей и других наружных орга­нов эволюционно обусловлена. Большее приспособительное значение могло иметь быстрое заживление раневой поверхности, чем длительное существо­вание нежного регенерата на местах, постоянно травмируе­мых при активном образе жизни.

Трансплантация , или пересадка клеток, тканей и органов с одного места на другое у одного организма, а также от одного организма к другому. Нередко желательной является пересад­ка здорового органа одного организма на место пораженного органа другого организма, кроме чисто технических, хирургических задач, возникают задачи биологические, завися­щие от иммунологической несовместимости тканей донора с организмом реципиента, а также морально–этические проблемы.

Различают три вида трансплантации: ауто–, гомо– и гетеротрансплантацию. Аутотрансплантация – пересадка органов и тканей в пределах одного организма (пересадка кожи при ожогах и косметических дефектах, пересадка кишки на место пищево­да при ожогах последнего).

Гомотрансплантация , или аллогенная пересадка – транспланта­ция органов между разными организмами одного вида. В этом случае донор и реципиент отличаются в генетическом отношении. Исключение – однояйцевые близнецы. Трансплантация органов между однояйцевыми близнецами благоприятна, поскольку такие близнецы генетически идентичны.

Пересадка тканей между организмами, относящимися к разным биологическим видам – гетеротрансплантация , или ксеногенная пересадка. В зависимости от места пересадки различают ортотопическую и гетеротопическую трансплантацию. Первая – пересадка органа в его естественное место вместо удаленного, вторая – пересадка органа необычную для него область.

В целях пересадки органов производят хирургическое вмешательство одновременно на доноре и реципиенте либо используют органы, взятые от трупа. В органе, который должен быть пересажен, нарушается крово– и лимфоток, а также его иннервация. Успех пересадки органов зависит от хирургической подготовки врача, жизнеспособности трансплантата, преодоления иммунологической несовместимости тканей реципиента и донора, т.е. трансплантационного иммунитета.

Фронтальный опрос:

1. Охарактеризуйте постэмбриональное развитие.

2. Охарактеризуйте непрямое постэмбриональное развитие.

3. В чём биологическое значение личинок.

4. Охарактеризуйте прямое постэмбриональное развитие.

5. Дайте определение понятиям рост, старение и смерть. Охарактеризуйте, приведите примеры.

6. Регенерация, виды регенерации. Значение регенерации для медицины.

7. Трансплантация, виды трансплантации. Значение трансплантации для медицины.

Вопрос 1. Опишите строение половых клеток.
Половые клетки (гаметы) бывают двух типов. Женские гаметы - это яйцеклетки, мужские - сперматозоиды. Яйцеклетки крупные, округлые, неподвижные; они могут содержать запас питательных веществ в виде желтка (особенно много желтка в икринках рыб, яйцах пресмыкающихся и птиц). Сперматозоиды - мелкие подвижные клетки, которые, как правило, имеют головку, шейку и хвостжгутик, обеспечивающий их подвиж ность. В шейке располагаются митохондрии, в головке - ядро, содержащее хромосомы. У семенных растений мужские гаметы переносятся к яйцеклеткам с помощью особой структуры - пыльцевой трубки. В связи с эти они не имеют жгутика и называются спермиями.

Вопрос 2. От чего зависит размер яйцеклеток?
Яйцеклетки значительно крупнее соматических клеток, т.к. содержат питательные вещества. У некоторых видов животных накапливается столько желтка, что яйцеклетки становятся видимыми невооруженным глазом (Например: икринки рыб и земноводных, яйца рептилий и птиц).
Из современных животных наиболее крупные яйца у сельдевой акулы (диаметром 29 см), у страуса (диаметром 10,5 см), у курицы – диаметр 3,5 см. У плацентарных млекопитающих размер яйцеклеток составляет всего 0,1-0,3 мм. Яйцеклетки могут иметь дополнительные оболочки: белковые, кожистые, известковые. Оболочки выполняют функции защиты от внешних неблагоприятных факторов. Оболочки проницаемы для воздуха, но вирусы и бактерии не проходят, в особенностях через оболочки яиц птиц. У плацентарных млекопитающих оболочки яйцеклетки служат для внедрения зародыша в стенку матки и формирования плаценты.
Размер яйцеклеток зависит от наличия или отсутствия в них запаса питательных веществ. Яйцеклетки, содержащие много желтка (например, у птиц), имеют размеры от нескольких миллиметров до 15 см. Яйцеклетки, почти не содержащие запаса питательных веществ, значительно мельче. В свою очередь, количество желтка определяется тем, развивается ли оплодотворенная яйцеклетка самостоятельно, либо заботу о зародыше берет на себя материнский организм. В последнем случае какой-либо значительный запас питания не нужен.

Вопрос 3. Какие периоды выделяют в процессе развития половых клеток?
В ходе развития половых клеток выделяют:
период размножения - клетки стенок половых желез активно делятся митозом, образуя незрелые половые клетки (клетки-предшественницы); у мужчин этот процесс начинается с наступлением половой зрелости и идет почти всю жизнь, у женщин завершается еще в эмбриональном периоде;
период роста - происходит увеличение цитоплазмы клеток-предшественниц, накопление необходимых питательных и строительных веществ, удвоение ДНК; этот процесс лучше выражен у яйцеклеток;
период созревания - происходит мейотическое деление клеток-предшественниц, приводящее к образованию из одной диплоиднойклетки четырех гаплоидных; при сперматогенезе все четыре клетки одинаковые, в дальнейшем они превращаются в зрелые сперматозоиды; в овогенезе формируются три мелкие клетки (направительные тельца) и одна крупная (будущая яйцеклетка).

Вопрос 4. Расскажите, как протекает период созревания (мейоз) в процессе сперматогенеза; овогенеза.
В процессе сперматогенеза в период созревания идет два последовательных деления мейозом, образуется вначале два сперматоцита II порядка, а затем четыре сперматиды, имеющие овальную форму и значительно меньшие размеры. Перед вторым делением удвоения генетического материала не происходит. В результате образуются четыре клетки - будущие сперматозоиды, которые постепенно приобретают зрелый вид и становятся подвижными.
В процессе овогенеза в период соревания идет два последовательных деления мейозом. В результате первого деления образуется овоцит II порядка и одно направительное или редукционное тельце. Овоцит II порядка – это крупная клетка, а редукционное тельце- это мелкая клетка, состоящая преимущественно из ядра и минимального количества цитоплазмы. Это происходит за счет особенностей цитокинеза, т.е. неравномерного разделения цитоплазмы. После второго мейотического деления цитоплазма снова распределяется не равномерно и образуется крупная овотида и направительное тельце. Первое направительное тельце также делится. В конце этого периода образуется овотида и 3-и направительные тельца. Период созревания протекает в маточных трубах и здесь же идет оплодотворение. На стадии метафазы II предшественница яйцеклетки овулирует - выходит из яичника и попадает в брюшную полость, а затем в яйцевод. Второе мейотическое деление завершается, только если произошло оплодотворение. В противном случае так и не сформировавшаяся женская гамета погибает и выводится из организма. Полярные тельца также через некоторое время погибают. Их роль - удаление избытка генетического материала и перераспределение питательных веществ (практически все они достаются яйцеклетке).

Вопрос 5. Перечислите отличия мейоза от митоза.
Мейоз, в отличие от митоза, состоит из двух делений.
При митозе в профазе нет конъюгации гомологичных хромосом и кроссинговера.
Удвоение хромосом соответствует каждому делению клетки.
В метафазе при митозе на экваторе выстраиваются хромосомы, состоящие из двух хроматид.
В анафазе при митозе к полюсам расходятся хроматиды.
В телофазе дочерние клетки содержат то же число хромосом, что и материнские.
При мейозе в профазе I происходит конъюгация гомологичных хромосом, имеет место кроссинговер. Образуются биваленты хромосом.
В метафазе I при мейозе на экваторе располагаются биваленты хромосом.
При мейозе в анафазе I к полюсам расходятся хромосомы, состоящие из двух хроматид.
В телофазе I мейоза число хромосом в дочерних клетках вдвое меньше, чем в материнских.
Между I и II делениями мейоза в интерфазе нет синтеза ДНК.
Мейоз осуществляется в диплоидных и полиплоидных клетках.
В результате мейоза из одной клетки образуются четыре гаплоидных.
Мейоз у человека имеет место во время овогенеза и сперматогенеза.
Принципиальным отличием мейоза является то, что в анафазе I к разным полюсам клетки расходятся не хроматиды (как в анафазе митоза), а гомологичные хромосомы. Именно в этот момент происходит превращение диплоидного хромосомного набора в гаплоидный. При таком расхождении в формирующихся клетках образуется случайная комбинация материнских и отцовских хромосом, что определяет генетическое разнообразие будущих гамет. Иными словами, в результате мейоза возникают генетически различающиеся клетки, в то время как после митоза все дочерние клетки идентичны исходной материнской.

Вопрос 6. В чем заключается биологический смысл и значение мейоза?
Значение мейоза.
1. Поддерживается постоянное число хромосом у видов, размножающихся половым способом, т.к. при слиянии гаплоидных клеток восстанавливается диплоидный набор хромосом.
2. Образуется большое количество различных комбинаций отцовских и материнских хромосом, за счет независимого расхождения гомологичных хромосом в анафазу I. Число комбинаций пар хромосом определяется как 2n, где n – гаплоидный набор хромосом. У человека число комбинаций равно 223 = 8388608.
3. Происходит перекомбинация генетического материала, за счет кроссинговера, который идет в профазу I, на стадии пахинемы.
Биологический смысл мейоза заключается в поддержании постоянства числа хромосом в ряду поколений.