Механизмы сохранения нуклеогидной последовательности ДНК. Химическая стабильность. Репликация. Репарация. Репарация ДНК бактерий. Системы репарации днк. Компенсация функций нарушенных в результате мутаций. Интрагенная супрессия. Экстрагенная супрессия Ант

Механизм репарации основан на наличии в молекуле ДНК двух комплементарных цепей. Искажение последовательности нуклеотидов в одной из них обнаруживается специфическими ферментами. Затем соответствующий участок удаляется и замещается новым, синтезированным на второй комплементарной цепи ДНК. Такую репарацию называют эксцизионной, т.е. с "вырезанием" (рис.15). Она осуществляется до очередного цикла репликации, поэтому ее называют также дорепликативной.

Рис.14. Схема процесса коррекции при синтезе ДНК:

I-включение в цепь ДНК нуклеотида с измененной (таутомерной) формой цитоэина, который "незаконно" спаривается с аденином; II - быстрый переход цитозина в обычную форму нарушает его спаривание с аденином; неспаренный 3"-ОН-конец синтезируемой цепи препятствует дальнейшему ее удлинению под действием ДНК-полимеразы; III - ДНК-полимераза удаляет незаконный нуклеотид, в результате чего вновь появляется спаренный с матрицей 3 "-ОН-конец; IV - ДНК-полимераза продолжает наращивание цепи на 3"-ОН-конце.

Восстановление исходной структуры ДНК требует участия ряда ферментов. Важным моментом в запуске механизма репарации является обнаружение ошибки в структуре ДНК. Нередко такие ошибки возникают во вновь синтезированной цепи в процессе репликации. Ферменты репарации должны обнаружить именно эту цепь. У многих видов живых организмов вновь синтезированная цепь ДНК отличается от материнской степенью метилирования ее азотистых оснований, которое отстает от синтеза. Репарации при этом подвергается неметилированная цепь. Объектом узнавания ферментами репарации могут также служить разрывы в цепи ДНК. У высших организмов, где синтез ДНК происходит не непрерывно, а отдельными репликонами, вновь синтезируемая цепь ДНК имеет разрывы, что делает возможным ее узнавание. Восстановление структуры ДНК при утрате пуриновых оснований одной из ее цепей предполагает обнаружение дефекта с помощью фермента эндонуклеазы, которая разрывает фосфоэфирную связь в месте повреждения цепи. Затем измененный участок с несколькими примыкающими к нему нуклеотидами удаляется ферментом экзонуклеазой, а на его месте в соответствии с порядком оснований комплементарной цепи образуется правильная нуклеотидная последовательность (рис.15).

Рис.15. Схема эксцизионной, дорепликативной репарации ДНК.

При изменении одного из оснований в цепи ДНК в восстановлении исходной структуры принимают участие ферменты ДНК-гликозилазы числом около 20. Они специфически узнают повреждения, обусловленные дезаминированием, алкилированием и другими структурными преобразованиями оснований. Такие модифицированные основания удаляются. Возникают участки, лишенные оснований, которые репарируются, как при утрате пуринов. Если восстановление нормальной структуры не осуществляется, например в случае дезаминирования азотистых оснований, происходит замена одних пар комплементарных оснований другими - пара Ц-Г может заменяться парой Т-А и т.п. .

Образование в полинуклеотидных цепях под действием УФ-лучей тиминовых димеров (Т-Т) требует участия ферментов, узнающих не отдельные измененные основания, а более протяженные повреждения структуры ДНК. Репаративный процесс в этом случае также связан с удалением участка, несущего димер, и восстановлением нормальной последовательности нуклеотидов путем синтеза на комплементарной цепи ДНК.

В том случае, когда система эксцизионной репарации не исправляет изменения, возникшего в одной цепи ДНК, в ходе репликации происходит фиксация этого изменения и оно становится достоянием обеих цепей ДНК. Это приводит к замене одной пары комплементарных нуклеотидов на другую либо к появлению разрывов (брешей) во вновь синтезированной цепи против измененных участков. Восстановление нормальной структуры ДНК при этом может произойти и после репликации.

ДНК - это линейный полимер, содержащий от 70-80 до 10 9 мононуклеотидов, которые соединяются ковалентными фосфодиэфирными связями, возникающими между гидроксильной группой пентозы одного нуклеотида и фосфатной группой следующего нуклеотида.

Данные рентгеноструктурного анализа показали, что молекула ДНК большинства живых организмов, за исключением некоторых фагов, состоят из двух полинуклеотидных цепей, антипараллельно направленных и ориентированных таким образом, что их сахарофосфатные остовы оказываются снаружи, а азотистые основания - внутри. Основания располагаются парами друг против друга и соединяются водородными связями. Спаривание происходит только между комплементарными (подходящими друг другу) основаниями: одним пуриновым и одним перимединовым. Пара А-Т соединяется двумя, а Г-Ц тремя водородными связями. Молекула ДНК имеет форму двойной спирали, в котором полинуклеотидные цепи закручены вокруг воображаемой центральной оси.

Спираль ДНК характеризуется рядом параметров:

ширина спирали около 2 нм;

шаг или полный оборот спирали составляет 3,4 нм и содержит 10 пар комплементарных нуклеотидов.

ДНК обладает уникальными свойствами: способностью к самоудвоению (репликации) и способностью к самовосстановлении (репарации).

20 белков: узнающих измененные участки ДНК и удаляющие их из цепи, восстанавливающих правильную последовательность нуклеотидов и сшивающих восстановленный фрагмент с остальной молекулой ДНК.5% всей клеточной РНК.

Репликация осуществляется под контролем ряда ферментов и протекает в несколько этапов. Она начинается в определенных точках молекулы ДНК. Специальные ферменты разрывают водородные связи между комплементарными азотистыми, и спираль раскручивается. Поинуклеотидные цепи материнской молекулы удерживаются в раскрученном состоянии и служат матрицей для синтеза новых цепей.

С помощью фермента ДНК-полимеразы из имеющихся в среде трифосфатов дезоксирибонуклеотидов (дАТФ, дГТФ, дЦТФ, дТТФ) комплементарно материнским цепям собираются дочерние цепи. Репликация осуществляется одновременно на обеих материнских цепях, но с разной скоростью и снекоторыми отличиями. На одном из цепей (лидирующей) сборка дочерней цепи идет непрерывно, на другой (отставщей) - фрагментароно. В последующем синтезированные фрагменты смешиваются с помощью фермента ДНК лигазы. В результате из одной молекулы ДНК образуется две, каждая и которых имеет материнскую и дочернюю цепи. Синтезированные молекулы являются точными копиями друг друга и исходной молекулы ДНК. Такой способ репликации ДНК называется полуконсервативным и обеспечивает точное воспроизведение в дочерних молекулах той информации, которая была записана в материнской молекуле.

Репарацией называется способность молекулы ДНК "исправлять" возникающие в ее цепях изменения. В восстановлении исходной молекулы ДНК участвует не менее

Перечисленные особенности химической структуры и свойств ДНК обусловливают выполняемые ею функции. ДНК записывает, хранит, воспроизводит генетическую информацию, участвует в процессах ее реализации между новыми поколениями клеток и организмов.

Рибосомная РНК (рРНК) синтезируется в основном в ядрышке, в области генов рРНК и представлена разнообразными по молекулярной массе молекулами, входящими в состав большой или малой субчастиц рибосом. На долю рРНК приходиться 85% всей РНК клетки.

Транспортная РНК (тРНК) составляет около 10% клеточной РНК. Существует более 40 видов тРНК. При реализации генетической информации каждая тРНК присоединяет определенную аминокислоту и транспортирует ее к месту сборки полипептида. У эукариот тРНК состоят из 70-90 нуклеотидов и имеют структуру в виде "клеверного листа".

Рибонуклеиновые кислоты - РНК - представлены разнообразными по размерам, структуре и выполняемым функциям молекулами. Все молекулы РНК являются копиями определенных участков молекулы ДНК и, помимо уже указанных отличий, оказывается короче ее и состоит из одной цепи. Между отдельными комплементарными друг другу участками одной цепи РНК возможно спаривание оснований (А-У, Г-Ц) и образование спиральных участков. В результате молекулы приобретают специфическую конформацию.

Матричная, или информационная, РНК (мРНК, иРНК) синтезируется в ядре под контролем фермента РНК-полимеразы комплементарно информативным последовательностям ДНК, переносит эту информацию на рибосомы, где становится матрицей для синтеза белковой молекулы. В зависимости от объема копируемой информации молекула иРНК может иметь различную длину и составляет около 5% всей клеточной РНК.

Оглавление темы "Генетические элементы бактерий. Мутации у бактерий. Трансдукция.":
1. Мигрирующие генетические элементы бактерий. Транспозоны. Бактериофаги, как мигрирующие генетические элементы.
2. Мутация. Мутации у бактерий. Мутагены. Спонтанные мутации. Обратные мутации (реверсии).
3. Индуцированные мутации бактерий. Химический мутагенез. Радиационный мутагенез. Типы мутаций.
4. Репарация ДНК бактерий. Системы репарации днк. Компенсация функций нарушенных в результате мутаций. Интрагенная супрессия. Экстрагенная супрессия.
5. Перенос бактериальной ДНК. Конъюгация бактерий. F-фактор бактерии.
6. Трансформация бактерий. Стадии трансформации бактерии. Картирование хромосом бакетерий.
7. Трансдукция. Неспецифическая трансдукция. Специфическая трансдукция. Абортивная трансдукция. Феномен лизогении.
8. Свойства бактерий. Ненаследуемые изменения свойств бактерий. S - колонии. R - колонии. M - колонии. D - колонии бактерий.

Репарация ДНК бактерий. Системы репарации днк. Компенсация функций нарушенных в результате мутаций. Интрагенная супрессия. Экстрагенная супрессия.

В клетке существуют механизмы, способные полностью или частично восстанавливать исходную структуру изменённой ДНК. Мутации, вызванные радиацией, химическими веществами и другими факторами, теоретически могли бы привести к вымиранию бактериальной популяции, если бы последняя была лишена способности к репарации ДНК . Совокупность ферментов, катализирующих коррекцию повреждений ДНК, объединяют в так называемые системы репарации, принципиально различающиеся по биохимическим механизмам «залечивания» повреждений. Известно три основных направления коррекции дефектов ДНК.

1. Непосредственная реверсия от повреждённой ДНК к исходной структуре, когда изменения в ДНК исправляются с помощью единственной ферментативной реакции. Например, удаление неправильно присоединённой метильной группы при шестом атоме кислорода гуанина с помощью метилтрансферазы; или расщепление возникшего в результате облучения тиминового димера с помощью фотолиазы (рекомбинационная репарация ).

2. «Вырезание» повреждений с последующим восстановлением исходной структуры (эксцизионная репарация).

3. Активация особых механизмов , обеспечивающих выживание при повреждениях ДНК (восстановление исходной структуры ДНК в результате рекомбинации; коррекция ошибочного спаривания оснований; трансляционный синтез на повреждённой матрице ДНК ). Эти механизмы не всегда приводят к полному восстановлению исходной структуры ДНК.

Компенсация функций, нарушенных в результате мутаций

Первичная мутация может быть компенсирована вторичной мутацией, которая произошла внутри мутировавшего гена (интрагенно) или в другом гене (экстрагенно). Изменения, которые устраняют проявления мутации, не исправляя при этом первоначального нарушения в ДНК , называют супрессией .

Интрагенная супрессия вызвана вторичной мутацией, корригирующей эффекты первичной мутации. Например, точечная мутация, приводящая к синтезу дефектного белка с утраченной биологической активностью, может быть исправлена, если вторичная точечная мутация приведёт к кодированию аминокислоты, сохраняющей конфигурацию и активность белка. Точное восстановление исходной структуры гена называют истинной обратной мутацией (истинной реверсией ). Если эффект первой мутации компенсирован мутацией в другой части гена, такие мутации называют вторичными реверсиями.

Экстрагенная супрессия - подавление проявления мутации, произошедшей в одном гене, вследствие мутации во втором гене.

Рис. 3.14. Схема процесса коррекции при синтезе ДНК:

I-включение в цепь ДНК нуклеотида с измененной (таутомерной) формой цитоэина, который «незаконно» спаривается с аденином; II - быстрый переход цитозина в обычную форму нарушает его спаривание с аденином; неспаренный 3"-ОН-конец синтезируемой цепи препятствует дальнейшему ее удлинению под действием ДНК-полимеразы; III - ДНК-полимераза удаляет незаконный нуклеотид, в результате чего вновь появляется спаренный с матрицей 3 "-ОН-конец; IV - ДНК-полимераза продолжает наращивание цепи на 3"-ОН-конце

Восстановление исходной структуры ДНК требует участия ряда ферментов. Важным моментом в запуске механизма репарации является обнаружение ошибки в структуре ДНК. Нередко такие ошибки возникают во вновь синтезированной цепи в процессе репликации. Ферменты репарации должны обнаружить именно эту цепь. У многих видов живых организмов вновь синтезированная цепь ДНК отличается от материнской степенью метилирования ее азотистых оснований, которое отстает от синтеза. Репарации при этом подвергается неметилированная цепь. Объектом узнавания ферментами репарации могут также служить разрывы в цепи ДНК. У высших организмов, где синтез ДНК происходит не непрерывно, а отдельнымирепликонами, вновь синтезируемая цепь ДНК имеет разрывы, что делает возможным ее узнавание.

Восстановление структуры ДНК при утрате пуриновых оснований одной из ее цепей предполагает обнаружение дефекта с помощью фермента эндонуклеазы, которая разрывает фосфоэфирную связь в месте повреждения цепи. Затем измененный участок с несколькими примыкающими к нему нуклеотидами удаляется ферментом экзонуклеазой, а на его месте в соответствии с порядком оснований комплементарной цепи образуется правильная нуклеотидная последовательность (рис. 3.15).

Рис. 3.15. Схема эксцизионной, дорепликативной репарации ДНК

При изменении одного из оснований в цепи ДНК в восстановлении исходной структуры принимают участие ферменты ДНК-гликозилазы числом около 20. Они специфически узнают повреждения, обусловленные дезаминированием, алкилированием и другими структурными преобразованиями оснований. Такие модифицированные основания удаляются. Возникают участки, лишенные оснований, которые репарируются, как при утрате пуринов. Если восстановление нормальной структуры не осуществляется, например в случае дезаминирования азотистых оснований, происходит замена одних пар комплементарных оснований другими -пара Ц-Г может заменяться парой Т-А и т.п. (см. разд. 3.4.2.3).

Образование в полинуклеотидных цепях под действием УФ-лучей тиминовых димеров (Т-Т) требует участия ферментов, узнающих не отдельные измененные основания, а более протяженные повреждения структуры ДНК. Репаративный процесс в этом случае также связан с удалением участка, несущего димер, и восстановлением нормальной последовательности нуклеотидов путем синтеза на комплементарной цепи ДНК.

В том случае, когда система эксцизионной репарации не исправляет изменения, возникшего в одной цепи ДНК, в ходе репликации происходит фиксация этого изменения и оно становится достоянием обеих цепей ДНК. Это приводит к замене одной пары комплементарных нуклеотидов на другую либо к появлению разрывов (брешей) во вновь синтезированной цепи против измененных участков. Восстановление нормальной структуры ДНК при этом может произойти и после репликации.

Пострепликативная репарация осуществляется путем рекомбинации (обмена фрагментами) между двумя вновь образованными двойными спиралями ДНК. Примером такой пострепликативной репарации может служить восстановление нормальной структуры ДНК при возникновении тиминовых димеров (Т-Т), когда они не устраняются самопроизвольно под действием видимого света (световая репарация) или в ходе дорепликативной эксцизионной репарации.

Ковалентные связи, возникающие между рядом стоящими остатками тимина, делают их не способными к связыванию с комплементарными нуклеотидами. В результате во вновь синтезируемой цепи ДНК появляются разрывы (бреши), узнаваемые ферментами репарации. Восстановление целостности новой полинуклеотидной цепи одной из дочерних ДНК осуществляется благодаря рекомбинации с соответствующей ей нормальной материнской цепью другой дочерней ДНК. Образовавшийся в материнской цепи пробел заполняется затем путем синтеза на комплементарной ей полинуклеотидной цепи (рис. 3.16). Проявлением такой пострепликативной репарации, осуществляемой путем рекомбинации между цепями двух дочерних молекул ДНК, можно считать нередко наблюдаемый обмен материалом между сестринскими хроматидами (рис. 3.17).

Рис. 3.16. Схема пострепликативной репарации ДНК:

I - возникновение тиминового димера в одной из цепей ДНК;

II - образование «бреши» во вновь синтезируемой це­пи против измененного участка материнской молекулы после репликации (стрелкой показано последующее заполнение «бреши» участком из соответствующей це­пи второй дочерней молекулы ДНК);

III - восстановление целостности дочерней цепи вер­хней молекулы за счет рекомбинации и в нижней молекуле за счет синтеза на комплементарной цепи

Рис. 3.17. Межхроматидные обмены (указаны стрелками)

В ходе дорепликативной и пострепликативной репарации восстанавливается большая часть повреждений структуры ДНК. Однако, если в наследственном материале клетки возникает слишком много повреждений и часть из них не ликвидируется, включается система индуцируемых (побуждаемых) ферментов репарации (SOS-система). Эти ферменты заполняют бреши, восстанавливая целостность синтезируемых полинуклеотидных цепей без точного соблюдения принципа комплементарности. Вот почему иногда сами процессы репарации могут служить источником стойких изменений в структуре ДНК (мутаций). Названная реакция также относится к SOS-системе.