Деформация виды деформации сила упругости закон гука. Деформации. Силы упругости. Закон Гука. Закон Гука для малых деформаций

КОНТРОЛЬНЫЕ ВОПРОСЫ

1) Что называется деформацией? Какие виды деформаций вы знаете?

Деформация - изменение относительного положения частиц тела, связанное с их перемещением. Деформация представляет собой результат изменения межатомных расстояний и перегруппировки блоков атомов. Обычно деформация сопровождается изменением величин межатомных сил, мерой которого является упругое напряжение.

Виды деформаций:

Растяжение-сжатие - в сопротивлении материалов - вид продольной деформации стержня или бруса, возникающий в том случае, если нагрузка к нему прикладывается по его продольной оси (равнодействующая сил, воздействующих на него, нормальна поперечному сечению стержня и проходит через его центр масс).

Растяжение вызывает удлинение стержня (также возможен разрыв и остаточная деформация), сжатие вызывает укорочение стержня (возможна потеря устойчивости и возникновение продольного изгиба).

Изгиб - вид деформации, при котором происходит искривление осей прямых брусьев или изменение кривизны осей кривых брусьев. Изгиб связан с возникновением в поперечных сечениях бруса изгибающих моментов. Прямой изгиб возникает в случае, когда изгибающий момент в данном поперечном сечении бруса действует в плоскости, проходящей через одну из главных центральных осей инерции этого сечения. В случае, когда плоскость действия изгибающего момента в данном поперечном сечении бруса не проходит ни через одну из главных осей инерции этого сечения, называется косым.

Если при прямом или косом изгибе в поперечном сечении бруса действует только изгибающий момент, то соответственно имеется чистый прямой или чистый косой изгиб. Если в поперечном сечении действует также и поперечная сила, то имеется поперечный прямой или поперечный косой изгиб.

Кручение - один из видов деформации тела. Возникает в том случае, если нагрузка прикладывается к телу в виде пары сил (момента) в его поперечной плоскости. При этом в поперечных сечениях тела возникает только один внутренний силовой фактор - крутящий момент. На кручение работают пружины растяжения-сжатия и валы.

Виды деформации твердого тела. Деформация упругая и пластическая.

Деформация твёрдого тела может явиться следствием фазовых превращений, связанных с изменением объёма, теплового расширения, намагничивания (магнитострикционный эффект), появления электрического заряда (пьезоэлектрический эффект) или же результатом действия внешних сил.

Деформация называется упругой, если она исчезает после удаления вызвавшей её нагрузки, и пластической, если после снятия нагрузки она не исчезает (во всяком случае полностью). Все реальные твёрдые тела при деформации в большей или меньшей мере обладают пластическими свойствами. При некоторых условиях пластическими свойствами тел можно пренебречь, как это и делается в теории упругости. Твёрдое тело с достаточной точностью можно считать упругим, то есть не обнаруживающим заметных пластических деформаций, пока нагрузка не превысит некоторого предела.

Природа пластической деформации может быть различной в зависимости от температуры, продолжительности действия нагрузки или скорости деформации. При неизменной приложенной к телу нагрузке деформация изменяется со временем; это явление называется ползучестью. С возрастанием температуры скорость ползучести увеличивается. Частными случаями ползучести являются релаксация и последействие упругое. Одной из теорий, объясняющих механизм пластической деформации, является теория дислокаций в кристаллах.

Вывод закона Гука для различных видов деформации.

Чистый сдвиг: Чистое кручение:

4) Что называется модулем сдвига и модулем кручения, в чем их физический смысл?

Модуль сдвига или модуль жесткости (G или μ) характеризует способность материала сопротивляться изменению формы при сохранении его объёма; он определяется как отношение напряжения сдвига к деформации сдвига, определяемой как изменение прямого угла между плоскостями, по которым действуют касательные напряжения). Модуль сдвига является одной из составляющих явления вязкости.

Модуль сдвига: Модуль кручения:

5) Каково математическое выражение закона Гука? В каких единицах измеряются модуль упругости и напряжение?

Измеряется в Па , - закон Гука

Закон пропорциональности удлинения пружины приложенной силе был открыт английским физиком Робертом Гуком (1635-1703г.)

Научные интересы Гука были столь широки, что он часто не успевал доводить свои исследования до конца. Это давало повод к острейшим спорам о приоритете в открытии тех или иных законов с крупнейшими учеными (Гюйгенс, Ньютоном и др.). Однако закон Гука был настолько убедительно обоснован многочисленными периментами, что тут приоритет Гука никогда не оспаривался.

Теория пружины Роберта Гука:

В этом и состоит закон Гука!


РЕШЕНИЕ ЗАДАЧ

Определить жесткость пружины, которая под действием силы 10 Н удлинилась на 5 см.

Дано:
g = 10 H/кг
F = 10H
X = 5см = 0,05м
Найти:
k = ?

Груз находится в равновесии.

Ответ: жесткость пружины k = 200H/м.


ЗАДАЧА НА "5"

(сдаем на листочке).

Объясните, почему безопасен прыжок акробата на сетку батута с большой высоты? (призываем на помощь Роберта Гука)
С нетерпением жду ответа!


МАЛЕНЬКИЙ ОПЫТ

Поставьте вертикально резиновую трубку, на которую предварительно туго надето металлическое кольцо, и растяните трубку. Что при этом произойдет с кольцом?



Динамика - Класс!ная физика

ОПРЕДЕЛЕНИЕ

Деформациями называются любые изменения формы, размеров и объема тела. Деформация определяет конечный результат движения частей тела друг относительно друга.

ОПРЕДЕЛЕНИЕ

Упругими деформациями называются деформации, полностью исчезающие после устранения внешних сил.

Пластическими деформациями называются деформации, полностью или частично сохраняющиеся после прекращения действии внешних сил.

Способность к упругим и пластическим деформациям зависит от природы вещества, из которого состоит тело, условий, в которых оно находится; способов его изготовления. Например, если взять разные сорта железа или стали, то у них можно обнаружить совершенно разные упругие и пластичные свойства. При обычных комнатных температурах железо является очень мягким, пластичным материалом; закаленная сталь, наоборот, — твердый, упругий материал. Пластичность многих материалов представляет собой условие для их обработки, для изготовления из них нужных деталей. Поэтому она считается одним из важнейших технических свойств твердого вещества.

При деформации твердого тела происходит смещение частиц (атомов, молекул или ионов) из первоначальных положений равновесия в новые положения. При этом изменяются силовые взаимодействия между отдельными частицами тела. В результате в деформированном теле возникают внутренние силы, препятствующие его деформации.

Различают деформации растяжения (сжатия), сдвига, изгиба, кручения.

Силы упругости

ОПРЕДЕЛЕНИЕ

Силы упругости – это силы, возникающие в теле при его упругой деформации и направленные в сторону, противоположную смещению частиц при деформации.

Силы упругости имеют электромагнитную природу. Они препятствуют деформациям и направлены перпендикулярно поверхности соприкосновения взаимодействующих тел, а если взаимодействуют такие тела, как пружины, нити, то силы упругости направлены вдоль их оси.

Силу упругости, действующую на тело со стороны опоры, часто называют силой реакции опоры.

ОПРЕДЕЛЕНИЕ

Деформация растяжения (линейная деформация) – это деформация, при которой происходит изменение только одного линейного размера тела. Ее количественными характеристиками являются абсолютное и относительное удлинение.

Абсолютное удлинение:

где и длина тела в деформированном и недеформированном состоянии соответственно.

Относительное удлинение:

Закон Гука

Небольшие и кратковременные деформации с достаточной степенью точности могут рассматриваться как упругие. Для таких деформаций справедлив закон Гука:

где проекция силы на ось жесткость тела, зависящая от размеров тела и материала, из которого оно изготовлено, единица жесткости в системе СИ Н/м.

Примеры решения задач

ПРИМЕР 1

Задание Пружина жесткостью Н/м в ненагруженном состоянии имеет длину 25 см. Какова будет длина пружины, если к ней подвесить груз массой 2 кг?
Решение Сделаем рисунок.

На груз, подвешенный на пружине, действуют и сила упругости .

Спроектировав это векторное равенство на координатную ось , получим:

По закону Гука сила упругости:

поэтому можно записать:

откуда длина деформированной пружины:

Переведем в систему СИ значение длины недеформированной пружины см м.

Подставив в формулу численные значения физических величин, вычислим:

Ответ Длина деформированной пружины составит 29 см.

ПРИМЕР 2

Задание По горизонтальной поверхности передвигают тело массой 3 кг с помощью пружины жесткостью Н/м. На сколько удлинится пружина, если под ее действием при равноускоренном движении за 10 с скорость тела изменилась от 0 до 20 м/с? Трением пренебречь.
Решение Сделаем рисунок.

На тело действуют , сила реакции опоры и сила упругости пружины .

Законом Гука обычно называют линейные соотношения между компонентами деформаций и компонентами напряжений.

Возьмем элементарный прямоугольный параллелепипед с гранями, параллельными координатным осям, нагруженный нормальным напряжением σ х , равномерно распределенным по двум противоположным граням (рис. 1). При этом σ y = σ z = τ х y = τ х z = τ yz = 0.

Вплоть до достижения предела пропорциональности относительное удлинение дается формулой

где Е — модуль упругости при растяжении. Для стали Е = 2*10 5 МПа , поэтому деформации очень малы и измеряются в процентах или в 1*10 5 (в тензометрических приборах, измеряющих деформации).

Удлинение элемента в направлении оси х сопровождается его сужением в поперечном направлении, определяемом компонентами деформаций

где μ - константа, называемая коэффициентом поперечного сжатия или коэффициентом Пуассона. Для стали μ обычно принимается равным 0,25-0,3.

Если рассматриваемый элемент нагружен одновременно нормальными напряжениями σ x , σ y , σ z , равномерно распределенными по его граням, то добавляются деформации

Производя наложение компонент деформации, вызванных каждым из трех напряжений, получим соотношения

Эти соотношения подтверждаются многочисленными экспериментами. Примененный метод наложения или суперпозиции для отыскания полных деформаций и напряжений, вызванных несколькими силами, является законным, пока деформации и напряжения малы и линейно зависят от приложенных сил. В таких случаях мы пренебрегаем малыми изменениями размеров деформируемого тела и малыми перемещениями точек приложения внешних сил и основываем наши вычисления на начальных размерах и начальной форме тела.

Следует отметить, что из малости перемещений еще не следует линейность соотношений между силами и деформациями. Так, например, в сжатом силами Q стержне, нагруженном дополнительно поперечной силой Р , даже при малом прогибе δ возникает дополнительный момент М = , который делает задачу нелинейной. В таких случаях полные прогибы не являются линейными функциями усилий и не могут быть получены с помощью простого наложения (суперпозиции).

Экспериментально установлено, что если касательные напряжения действуют по всем граням элемента, то искажение соответствующего угла зависит только от соответствующих компонентов касательного напряжения.

Константа G называется модулем упругости при сдвиге или модулем сдвига.

Общий случай деформации элемента от действия на него трех нормальных и трех касательных компонентов напряжений можно получить с помощью наложения: на три линейные деформации, определяемые выражениями (5.2а), накладываются три деформации сдвига, определяемые соотношениями (5.2б). Уравнения (5.2а) и (5.2б) определяют связь между компонентами деформаций и напряжений и называются обобщенным законом Гука . Покажем теперь, что модуль сдвига G выражается через модуль упругости при растяжении Е и коэффициент Пуассона μ . Для этого рассмотрим частный случай, когда σ х = σ , σ y = и σ z = 0.

Вырежем элемент abcd плоскостями, параллельными оси z и наклоненными под углом 45° к осям х и у (рис. 3). Как следует из условий равновесия элемента 0, нормальные напряжения σ v на всех гранях элемента abcd равны нулю, а касательные напряжения равны

Такое напряженное состояние называется чистым сдвигом . Из уравнений (5.2а) следует, что

то есть удлинение горизонтального элемента 0c равно укорочению вертикального элемента 0b : ε y = -ε x .

Угол между гранями аb и bc изменяется, и соответствующую величину деформации сдвига γ можно найти из треугольника 0:

Отсюда следует, что

Закон Гука был открыт в XVII веке англичанином Робертом Гуком. Это открытие о растяжении пружины является одним из законов теории упругости и выполняет важную роль в науке и технике.

Определение и формула закона Гука

Формулировка этого закона выглядит следующим образом: сила упругости, которая появляется в момент деформации тела, пропорциональна удлинению тела и направлена противоположно движению частиц этого тела относительно других частиц при деформации.

Математическая запись закона выглядит так:

Рис. 1. Формула закона Гука

где Fупр – соответственно сила упругости, x – удлинение тела (расстояние, на которое изменяется исходная длина тела), а k – коэффициент пропорциональности, называемый жесткостью тела. Сила измеряется в Ньютонах, а удлинение тела – в метрах.

Для раскрытия физического смысла жесткости, нужно в формулу для закона Гука подставить единицу, в которой измеряется удлинение – 1 м, заранее получив выражение для k.

Рис. 2. Формула жесткости тела

Эта формула показывает, что жесткость тела численно равна силе упругости, которая возникает в теле (пружине), когда оно деформируется на 1 м. Известно, что жесткость пружины зависит от ее формы, размера и материала, из которого произведено данное тело.

Сила упругости

Теперь, когда известно, какая формула выражает закон Гука, необходимо разобраться в его основной величине. Основной величиной является сила упругости. Она появляется в определенный момент, когда тело начинает деформироваться, например, когда пружина сжимается или растягивается. Она направлена в обратную сторону от силы тяжести. Когда сила упругости и сила тяжести, действующие на тело, становятся равными, опора и тело останавливаются.

Деформация – это необратимые изменения, происходящие с размерами тела и его формой. Они связанны с перемещением частиц относительно друг друга. Если человек сядет в мягкое кресло, то с креслом произойдет деформация, то есть изменятся его характеристики. Она бывает разных типов: изгиб, растяжение, сжатие, сдвиг, кручение.

Так как сила упругости относится по своему происхождению к электромагнитным силам, следует знать, что возникает она из-за того, что молекулы и атомы – наименьшие частицы, из которых состоят все тела, притягиваются друг другу и отталкиваются друг от друга. Если расстояние между частицами очень мало, значит, на них влияет сила отталкивания. Если же это расстояние увеличить, то на них будет действовать сила притяжения. Таким образом, разность сил притяжения и сил отталкивания проявляется в силах упругости.

Сила упругости включает в себя силу реакции опоры и вес тела. Сила реакции представляет особый интерес. Это такая сила, которая действует на тело, когда его кладут на какую-либо поверхность. Если же тело подвешено, то силу, действующую на него, называют, силой натяжения нити.

Особенности сил упругости

Как мы уже выяснили, сила упругости возникает при деформации, и направлена она на восстановление первоначальных форм и размеров строго перпендикулярно к деформируемой поверхности. У сил упругости также есть ряд особенностей.

  • они возникают во время деформации;
  • они появляются у двух деформируемых тел одновременно;
  • они находятся перпендикулярно поверхности, по отношению к которой тело деформируется.
  • они противоположны по направлению смещению частиц тела.

Применение закона на практике

Закон Гука применяется как в технических и высокотехнологичных устройствах, так и в самой природе. Например, силы упругости встречаются в часовых механизмах, в амортизаторах на транспорте, в канатах, резинках и даже в человеческих костях. Принцип закона Гука лежит в основе динамометра – прибора, с помощью которого измеряют силу.