Сила Лоренца. Сила лоренца, определение, формула, физический смысл Определение силы лоренца по рисунку

«Физика - 11 класс»

Магнитное поле действует с силой на движущиеся заряженные частицы, в то числе и на проводники с током.
Какова же сила, действующая на одну частицу?


1.
Силу, действующую на движущуюся заряженную частицу со стороны магнитного поля, называют силой Лоренца в честь великого голландского физика X. Лоренца, создавшего электронную теорию строения вещества.
Силу Лоренца можно найти с помощью закона Ампера.

Модуль силы Лоренца равен отношению модуля силы F, действующей на участок проводника длиной Δl, к числу N заряженных частиц, упорядоченно движущихся в этом участке проводника:

Так как сила (сила Ампера), действующая на участок проводника со стороны магнитного поля
равна F = | I | BΔl sin α ,
а сила тока в проводнике равна I = qnvS
где
q - заряд частиц
n - концентрация частиц (т.е. число зарядов в единице объема)
v - скорость движения частиц
S - поперечное сечение проводника.

Тогда получаем:
На каждый движущийся заряд со стороны магнитного поля действует сила Лоренца , равная:

где α - угол между вектором скорости и вектором магнитной индукции.

Сила Лоренца перпендикулярна векторам и .


2.
Направление силы Лоренца

Направление силы Лоренца определяется с помощью того же правила левой руки , что и направление силы Ампера:

Если левую руку расположить так, чтобы составляющая магнитной индукции, перпендикулярная скорости заряда, входила в ладонь, а четыре вытянутых пальца были направлены по движению положительного заряда (против движения отрицательного), то отогнутый на 90° большой палец укажет направление действующей на заряд силы Лоренца F л


3.
Если в пространстве, где движется заряженная частица, существует одновременно и электрическое поле, и магнитное поле, то суммарная сила, действующая на заряд, равна: = эл + л где сила, с которой электрическое поле действует на заряд q, равна F эл = q.


4.
Cила Лоренца не совершает работы , т.к. она перпендикулярна вектору скорости частицы.
Значит сила Лоренца не меняет кинетическую энергию частицы и, следовательно, модуль ее скорости.
Под действием силы Лоренца меняется лишь направление скорости частицы.

5.
Движение заряженной частицы в однородном магнитном поле

Есть однородное магнитное поле , направленное перпендикулярно к начальной скорости частицы .

Сила Лоренца зависит от модулей векторов скорости частицы и индукции магнитного поля.
Магнитное поле не меняет модуль скорости движущейся частицы, значит остается неизменным и модуль силы Лоренца.
Сила Лоренца перпендикулярна скорости и, следовательно, определяет центростремительное ускорение частицы.
Неизменность по модулю центростремительного ускорения частицы, движущейся с постоянной по модулю скоростью, означает, что

В однородном магнитном поле заряженная частица равномерно движется по окружности радиусом r .

Согласно второму закону Ньютона

Тогда радиус окружности по которой движется частица, равен:

Время, за которое частица делает полный оборот (период обращения), равно:

6.
Использование действия магнитного поля на движущийся заряд.

Действие магнитного поля на движущийся заряд используют в телевизионных трубках-кинескопах, в которых летящие к экрану электроны отклоняются с помощью магнитного поля, создаваемого особыми катушками.

Сила Лоренца используется в циклотроне - ускорителе заряженных частиц для получения частиц с большими энергиями.

На действии магнитного поля основано также и устройство масс-спектрографов, позволяющих точно определять массы частиц..

Определение силы магнитной силы

Определение

Если заряд движется в магнитном поле, то на него действует сила ($\overrightarrow{F}$), которая зависит от величины заряда (q), скорости движения частицы ($\overrightarrow{v}$) относительно магнитного поля, и индукции магнитного поля ($\overrightarrow{B}$). Эта сила была установлена экспериментально, называется она магнитной силой.

И имеет в системе СИ вид:

\[\overrightarrow{F}=q\left[\overrightarrow{v}\overrightarrow{B}\right]\ \left(1\right).\]

Модуль силы в соответствии с (1) равен:

где $\alpha $ -- угол между векторами $\overrightarrow{v\ }и\ \overrightarrow{B}$. Из уравнения (2) следует, что если заряженная частица движется вдоль линии магнитного поля, то не испытывает действия магнитной силы.

Направление магнитной силы

Магнитная сила, исходя из (1) направлена перпендикулярно плоскости, в которой лежат векторы $\overrightarrow{v\ }и\ \overrightarrow{B}$. Ее направление совпадает с направлением векторного произведения $\overrightarrow{v\ }и\ \overrightarrow{B}$ в том случае, если величина движущегося заряда больше нуля, и направлена в противоположную сторону, если $q

Свойства силы магнитной силы

Магнитная сила работы над частицей не свершает, так как всегда направлена перпендикулярно скорости ее движения. Из этого утверждения следует, что с помощью воздействия на заряженную частицу с помощью постоянного магнитного поля ее энергию изменить нельзя.

Если на частицу, обладающую зарядом, действуют одновременно электрическое и магнитное поля, то равнодействующая сила может быть записана как:

\[\overrightarrow{F}=q\overrightarrow{E}+q\left[\overrightarrow{v}\overrightarrow{B}\right]\ \left(3\right).\]

Сила, указанная в выражении (3) называется силой Лоренца. Часть $q\overrightarrow{E}$ является силой, действующей со стороны электрического поля на заряд, $q\left[\overrightarrow{v}\overrightarrow{B}\right]$ характеризует силу действия магнитного поля на заряд. Сила Лоренца проявляется при движении электронов и ионов в магнитных полях.

Пример 1

Задание: Протон ($p$) и электрон ($e$), ускоренный одинаковой разностью потенциалов влетают в однородное магнитное поле. Во сколько раз радиус кривизны траектории движения протона $R_p$отличается от радиуса кривизны траектории электрона $R_e$. Углы, под которыми влетают частицы в поле, одинаковы.

\[\frac{mv^2}{2}=qU\left(1.3\right).\]

Из формулы (1.3) выразим скорость движения частицы:

Подставим (1.2), (1.4) в (1.1), выразим радиус кривизны траектории:

Подставим данные для разных частиц, найдем отношение $\frac{R_p}{R_e}$:

\[\frac{R_p}{R_e}=\frac{\sqrt{2Um_p}}{B\sqrt{q_p}sin\alpha }\cdot \frac{B\sqrt{q_e}sin\alpha }{\sqrt{2Um_e}}=\frac{\sqrt{m_p}}{\sqrt{m_e}}.\]

Заряды протона и электрона по модулю равны. Масса электрона $m_e=9,1\cdot {10}^{-31}кг,m_p=1,67\cdot {10}^{-27}кг$.

Проведем вычисления:

\[\frac{R_p}{R_e}=\sqrt{\frac{1,67\cdot {10}^{-27}}{9,1\cdot {10}^{-31}}}\approx 42.\]

Ответ: Радиус кривизны протона в 42 раза больше, чем радиус кривизны электрона.

Пример 2

Задание: Найдите напряженность электрического поля (E), если протон в скрещенном магнитном и электрическом полях движется прямолинейно. В эти поля он влетел, пройдя ускоряющую разность потенциалов равную U. Поля скрещены под прямым углом. Индукция магнитного поля равна B.

На частицу, по условиям задачи действует сила Лоренца, имеющая две составные части: магнитную и электрическую. Первая составляющая магнитная она равна:

\[\overrightarrow{F_m}=q\left[\overrightarrow{v}\overrightarrow{B}\right]\ \left(2.1\right).\]

$\overrightarrow{F_m}$ -- направлена перпендикулярно $\overrightarrow{v\ }и\ \overrightarrow{B}$. Электрическая составляющая силы Лоренца равна:

\[\overrightarrow{F_q}=q\overrightarrow{E}\left(2.2\right).\]

Сила $\overrightarrow{F_q}$- направлена по напряженности $\overrightarrow{E}$. Мы помним, что протон имеет положительный заряд. Для того чтобы протон двигался прямолинейно необходимо, чтобы магнитная и электрическая составляющие силы Лоренца уравновешивали друг друга, то есть их геометрическая сумма была равна нулю. Изобразим силы, поля и скорость движения протона, выполнив условия их ориентации на рис. 2.

Из рис.2 и условия равновесия сил запишем:

Скорость найдем из закона сохранения энергии:

\[\frac{mv^2}{2}=qU\to v=\sqrt{\frac{2qU}{m}}\left(2.5\right).\]

Подставим (2.5) в (2.4), получим:

Ответ: $E=B\sqrt{\frac{2qU}{m}}.$

Сила, действующая на электрический заряд Q , движущийся в магнитном поле со скоростью v , называется силой Лоренца и выражается формулой

(114.1)

где В - индукция магнитного поля, в котором заряд движется.

Направление силы Лоренца определяется с помощью правила левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор В, а четыре вытянутых пальца направить вдоль вектора v (для Q > 0 направления I и v совпадают, для Q < 0 - противоположны), то отогнутый большой палец покажет направление силы, действующей на положительный заряд. На рис. 169 показана взаимная ориентация векторов v , В (поле направлено к нам, на рисунке показано точками) и F для положительного заряда. На отрицательный заряд сила действует в противоположном направлении. Модуль силы Лоренца (см. (114.1)) равен

где - угол между v и В.

Выражение для силы Лоренца (114.1) позволяет найти ряд закономерностей движения заряженных частиц в магнитном поле. Направление силы Лоренца и направление вызываемого ею отклонения заряженной частицы в магнитном поле зависят от знака заряда Q частицы. На этом основано определение знака заряда частиц, движущихся в магнитных полях.

Если заряженная частица движется в магнитном поле со скоростью v , перпендикулярной вектору В, то сила Лоренца F = Q [ vB ] постоянна по модулю и нормальна к траектории частицы. Согласно второму закону Ньютона, эта сила создает центростремительное ускорение. Отсюда следует, что частица будет двигаться по окружности, радиус r которой определяется из условия QvB = mv 2 / r , откуда

(115.1)

Период вращения частицы, т. е. время Т , за которое она совершает один полный оборот,

Подставив сюда выражение (115.1), получим

(115.2)

т. е. период вращения частицы в однородном магнитном поле определяется только величиной, обратной удельному заряду (Q / m ) частицы, и магнитной индукцией поля, но не зависит от ее скорости (при v c ). На этом основано действие циклических ускорителей заряженных частиц (см. § 116).

Если скорость v заряженной частицы направлена под углом к вектору В (рис. 170), то ее движение можно представить в виде суперпозиции: 1) равномерного прямолинейного движения вдоль поля со скоростью v 1 = vcos ; 2) равномерного движения со скоростью v = vsin по окружности в плоскости, перпендикулярной полю. Радиус окружности определяется формулой (115.1) (в данном случае надо заменить v на v = vsin ). В результате сложения обоих движений возникает движение по спирали, ось которой параллельна магнитному полю (рис. 170).

Рис. 170

Шаг винтовой линии

Подставив в последнее выражение (115.2), получим

Направление, в котором закручивается спираль, зависит от знака заряда частицы.

Если скорость т заряженной частицы составляет угол а с направлением вектора В неоднородного магнитного поля, индукция которого возрастает в направлении движения частицы, то г и А уменьшаются с ростом В . На этом основана фокусировка заряженных частиц в магнитном поле.

Сообщение от администратора:

Ребята! Кто давно хотел выучить английский?
Переходите по и получите два бесплатных урока в школе английского языка SkyEng!
Занимаюсь там сам - очень круто. Прогресс налицо.

В приложении можно учить слова, тренировать аудирование и произношение.

Попробуйте. Два урока бесплатно по моей ссылке!
Жмите

Сила, с которой, электромагнитное поле действует на точечную заряженную частицу

Направление силы Лоренца определяется по правилу левой руки - Если поставить левую руку так, чтобы перпендикулярная скорости составляющая вектора индукции входила в ладонь, а четыре пальца были бы расположены по направлению скорости движения положительного заряда (или против направления скорости отрицательного заряда), то отогнутый большой палец укажет направление силы Лоренца

Так как сила Лоренца всегда перпендикулярна скорости заряда, то она не совершает работы.

Рассмотрим 2 вида движения заряженных частиц:

1) Если заряженная частица движется параллельно силовым линиям магнитного поля, то равняется нулю Fл = 0 , и заряд в магнитном поле движется равномерно и прямолинейно.

2) Если заряженная частица движется перпендикулярно силовым линиям магнитного поля, то сила Лоренца является центростремительной и равна:

Радиус данной окружности будет равен:

В формуле мы использовали:

Заряд электрона

но ток причем , тогда

Т.к. nS dl число зарядов в объёме S dl , тогда для одного заряда

или

, (2.5.2)

Сила Лоренца сила, действующая со стороны магнитного поля на движущийся со скоростью положительный заряд (здесь – скорость упорядоченного движения носителей положительного заряда ). Модуль лоренцевой силы:

, (2.5.3)

где α – угол между и .

Из (2.5.4) видно, что на заряд, движущийся вдоль линии , не действует сила ().

Лоренц Хендрик Антон (1853–1928) – нидерландский физик-теоретик, создатель классической электронной теории, член Нидерландской АН. Вывел формулу, связывающую диэлектрическую проницаемость с плотностью диэлектрика, дал выражение для силы, действующей на движущийся заряд в электромагнитном поле (сила Лоренца), объяснил зависимость электропроводности вещества от теплопроводности, развил теорию дисперсии света. Разработал электродинамику движущихся тел. В 1904 г. вывел формулы, связывающие между собой координаты и время одного и того же события в двух различных инерциальных системах отсчета (преобразования Лоренца).

Направлена сила Лоренца перпендикулярно к плоскости, в которой лежат векторы и . К движущемуся положительному заряду применимо правило левой руки или «правило буравчика » (рис. 2.6).

Направление действия силы для отрицательного заряда – противоположно, следовательно, к электронам применимо правило правой руки .

Так как сила Лоренца направлена перпендикулярно движущемуся заряду, т.е. перпендикулярно , работа этой силы всегда равна нулю . Следовательно, действуя на заряженную частицу, сила Лоренца не может изменить кинетическую энергию частицы.

Часто лоренцевой силой называют сумму электрических и магнитных сил :

, (2.5.4)

здесь электрическая сила ускоряет частицу, изменяет ее энергию.

Повседневно действие магнитной силы на движущийся заряд мы наблюдаем на телевизионном экране (рис. 2.7).

Движение пучка электронов по плоскости экрана стимулируется магнитным полем отклоняющей катушки. Если поднести постоянный магнит к плоскости экрана, то легко заметить его воздействие на электронный пучок по возникающим в изображении искажениям.

Действие лоренцевой силы в ускорителях заряженных частиц подробно описано в п. 4.3.