Решение линейных уравнений с одной переменной. Решение простых линейных уравнений Как решать линейные уравнения примеры

При решении линейных уравнений, мы стремимся найти корень, то есть такое значение для переменной, которое превратит уравнение в правильное равенство.

Чтобы найти корень уравнения нужно равносильными преобразования привести данное нам уравнение к виду

\(x=[число]\)

Это число и будет корнем.

То есть, мы преобразовываем уравнение, делая его с каждым шагом все проще, до тех пор, пока не сведем к совсем примитивному уравнению «икс = число», где корень – очевиден. Наиболее часто применяемыми при решении линейных уравнений являются следующие преобразования:

Например : прибавим \(5\) к обеим частям уравнения \(6x-5=1\)

\(6x-5=1\) \(|+5\)
\(6x-5+5=1+5\)
\(6x=6\)

Обратите внимание, что тот же результат мы могли бы получить быстрее – просто записав пятерку с другой стороны уравнения и поменяв при этом ее знак. Собственно, именно так и делается школьный «перенос через равно со сменой знака на противоположный».

2. Умножение или деление обеих частей уравнения на одинаковое число или выражение.

Например : разделим уравнение \(-2x=8\) на минус два

\(-2x=8\) \(|:(-2)\)
\(x=-4\)

Обычно данный шаг выполняется в самом конце, когда уравнение уже приведено к виду \(ax=b\), и мы делим на \(a\), чтобы убрать его слева.

3. Использование свойств и законов математики: раскрытие скобок, приведение подобных слагаемых, сокращение дробей и т.д.

Прибавляем \(2x\) слева и справа

Вычитаем \(24\) из обеих частей уравнения

Опять приводим подобные слагаемые

Теперь делим уравнение на \(-3\), тем самым убирая перед иксом в левой части.

Ответ : \(7\)

Ответ найден. Однако давайте его проверим. Если семерка действительно корень, то при подстановке ее вместо икса в первоначальное уравнение должно получиться верное равенство - одинаковые числа слева и справа. Пробуем.

Проверка:
\(6(4-7)+7=3-2\cdot7\)
\(6\cdot(-3)+7=3-14\)
\(-18+7=-11\)
\(-11=-11\)

Сошлось. Значит, семерка и в самом деле является корнем исходного линейного уравнения.

Не ленитесь проверять подстановкой найденные вами ответы, особенно если вы решаете уравнение на контрольной или экзамене.

Остается вопрос – а как определить, что делать с уравнением на очередном шаге? Как именно его преобразовывать? Делить на что-то? Или вычитать? И что конкретно вычитать? На что делить?

Ответ прост:

Ваша цель – привести уравнение к виду \(x=[число]\), то есть, слева икс без коэффициентов и чисел, а справа – только число без переменных. Поэтому смотрите, что вам мешает и делайте действие, обратное тому, что делает мешающий компонент.

Чтобы лучше это понять, разберем по шагам решение линейного уравнения \(x+3=13-4x\).

Давайте подумаем: чем данное уравнение отличается от \(x=[число]\)? Что нам мешает? Что не так?

Ну, во-первых, мешает тройка, так как слева должен быть только одинокий икс, без чисел. А что «делает» тройка? Прибавляется к иксу. Значит, чтобы ее убрать - вычтем такую же тройку. Но если мы вычитаем тройку слева, то должны вычесть ее и справа, чтобы равенство не было нарушено.

\(x+3=13-4x\) \(|-3\)
\(x+3-3=13-4x-3\)
\(x=10-4x\)

Хорошо. Теперь что мешает? \(4x\) справа, ведь там должны быть только числа. \(4x\) вычитается - убираем прибавлением .

\(x=10-4x\) \(|+4x\)
\(x+4x=10-4x+4x\)

Теперь приводим подобные слагаемые слева и справа.

Уже почти готово. Осталось убрать пятерку слева. Что она «делает»? Умножается на икс. Поэтому убираем ее делением .

\(5x=10\) \(|:5\)
\(\frac{5x}{5}\) \(=\)\(\frac{10}{5}\)
\(x=2\)

Решение завершено, корень уравнения – двойка. Можете проверить подстановкой.

Заметим, что чаще всего корень в линейных уравнениях только один . Однако могут встретиться два особых случая.

Особый случай 1 – в линейном уравнении нет корней.

Пример . Решить уравнение \(3x-1=2(x+3)+x\)

Решение :

Ответ : нет корней.

На самом деле, то, что мы придем к такому результату было видно раньше, еще когда мы получили \(3x-1=3x+6\). Вдумайтесь: как могут быть равны \(3x\) из которых вычли \(1\), и \(3x\) к которым прибавили \(6\)? Очевидно, что никак, ведь с одним и тем же сделали разные действия! Понятно, что результаты будут отличаться.

Особый случай 2 – в линейном уравнении бесконечное количество корней.

Пример . Решить линейное уравнение \(8(x+2)-4=12x-4(x-3)\)

Решение :

Ответ : любое число.

Это, кстати, было заметно еще раньше, на этапе: \(8x+12=8x+12\). Действительно, слева и справа – одинаковые выражения. Какой икс ни подставь – будет одно и то же число и там, и там.

Более сложные линейные уравнения.

Исходное уравнение не всегда сразу выглядит как линейное, иногда оно «маскируется» под другие, более сложные уравнения. Однако в процессе преобразований маскировка спадает.

Пример . Найдите корень уравнения \(2x^{2}-(x-4)^{2}=(3+x)^{2}-15\)

Решение :

\(2x^{2}-(x-4)^{2}=(3+x)^{2}-15\)

Казалось бы, здесь есть икс в квадрате – это не линейное уравнение! Но не спешите. Давайте применим

\(2x^{2}-(x^{2}-8x+16)=9+6x+x^{2}-15\)

Почему результат раскрытия \((x-4)^{2}\) стоит в скобке, а результат \((3+x)^{2}\) нет? Потому что перед первым квадратом стоит минус, который изменит все знаки. И чтобы не забыть об этом – берем результат в скобки, которую теперь раскрываем.

\(2x^{2}-x^{2}+8x-16=9+6x+x^{2}-15\)

Приводим подобные слагаемые

\(x^{2}+8x-16=x^{2}+6x-6\)

\(x^{2}-x^{2}+8x-6x=-6+16\)

Опять приводим подобные.

Вот так. Оказывается, исходное уравнение – вполне себе линейное, а иксы в квадрате не более чем ширма, чтоб нас запутать. :) Дорешиваем, деля уравнение на \(2\), и получаем ответ.

Ответ : \(x=5\)


Пример . Решить линейное уравнение \(\frac{x+2}{2}\) \(-\) \(\frac{1}{3}\) \(=\) \(\frac{9+7x}{6}\)

Решение :

\(\frac{x+2}{2}\) \(-\) \(\frac{1}{3}\) \(=\) \(\frac{9+7x}{6}\)

Уравнение не похоже на линейное, дроби какие-то... Однако давайте избавимся от знаменателей, умножив обе части уравнения на общий знаменатель всех – шестерку

\(6\cdot\)\((\frac{x+2}{2}\) \(-\) \(\frac{1}{3})\) \(=\) \(\frac{9+7x}{6}\) \(\cdot 6\)

Раскрываем скобку слева

\(6\cdot\)\(\frac{x+2}{2}\) \(-\) \(6\cdot\)\(\frac{1}{3}\) \(=\) \(\frac{9+7x}{6}\) \(\cdot 6\)

Теперь сокращаем знаменатели

\(3(x+2)-2=9+7x\)

Вот теперь похоже на обычное линейное! Дорешиваем его.

Переносом через равно собираем иксы справа, а числа слева

Ну и поделив на \(-4\) правую и левую часть, получаем ответ

Ответ : \(x=-1,25\)

Линейное уравнение — это алгебраическое уравнение. В этом уравнении полная степень составляющих его многочленов равна единице.

Линейные уравнения представляют в таком виде:

В общей форме: a 1 x 1 + a 2 x 2 + … + a n x n + b = 0

В канонической форме: a 1 x 1 + a 2 x 2 + … + a n x n = b.

Линейное уравнение с одной переменной.

Линейное уравнение с 1-ой переменной приводится к виду:

ax + b =0.

Например:

2х + 7 = 0 . Где а=2, b=7;

0,1х - 2,3 = 0. Где а=0,1, b=-2,3;

12х + 1/2 = 0. Где а=12, b=1/2.

Число корней зависимо от a и b :

Когда a = b =0 , значит, у уравнения есть неограниченное число решений, так как .

Когда a =0 , b ≠ 0 , значит, у уравнения нет корней, так как .

Когда a ≠ 0 , значит, у уравнения есть только один корень .

Линейное уравнение с двумя переменными.

Уравнением с переменной x является равенство типа A(x)=B(x) , где A(x) и B(x) — выражения от x . При подстановке множества T значений x в уравнение получаем истинное числовое равенство, которое называется множеством истинности этого уравнения либо решение заданного уравнения , а все такие значения переменной — корни уравнения.

Линейные уравнения 2-х переменных представляют в таком виде:

В общей форме: ax + by + c = 0,

В канонической форме: ax + by = -c,

В форме линейной функции: y = kx + m , где .

Решением либо корнями этого уравнения является такая пара значений переменных (x;y) , которая превращает его в тождество . Этих решений (корней) у линейного уравнения с 2-мя переменными неограниченное количество. Геометрической моделью (графиком) данного уравнения есть прямая y=kx+m .

Если в уравнении есть икс в квадрате, то такое уравнение называется

И т.п., логично познакомиться с уравнениями и других видов. Следующими по очереди идут линейные уравнения , целенаправленное изучение которых начинается на уроках алгебры в 7 классе.

Понятно, что сначала надо объяснить, что такое линейное уравнение, дать определение линейного уравнения, его коэффициентов, показать его общий вид. Дальше можно разбираться, сколько решений имеет линейное уравнение в зависимости от значений коэффициентов, и как находятся корни. Это позволит перейти к решению примеров, и тем самым закрепить изученную теорию. В этой статье мы это сделаем: детально остановимся на всех теоретических и практических моментах, касающихся линейных уравнений и их решения.

Сразу скажем, что здесь мы будем рассматривать только линейные уравнения с одной переменной, а уже в отдельной статье будем изучать принципы решения линейных уравнений с двумя переменными .

Навигация по странице.

Что такое линейное уравнение?

Определение линейного уравнения дается по виду его записи. Причем в разных учебниках математики и алгебры формулировки определений линейных уравнений имеют некоторые различия, не влияющие на суть вопроса.

Например, в учебнике алгебры для 7 класса Ю. Н. Макарычева и др. линейное уравнение определяется следующим образом:

Определение.

Уравнение вида a·x=b , где x – переменная, a и b – некоторые числа, называется линейным уравнением с одной переменной .

Приведем примеры линейных уравнений, отвечающие озвученному определению. Например, 5·x=10 – это линейное уравнение с одной переменной x , здесь коэффициент a равен 5 , а число b есть 10 . Другой пример: −2,3·y=0 – это тоже линейное уравнение, но с переменной y , в котором a=−2,3 и b=0 . А в линейных уравнениях x=−2 и −x=3,33 a не присутствуют в явном виде и равны 1 и −1 соответственно, при этом в первом уравнении b=−2 , а во втором - b=3,33 .

А годом ранее в учебнике математики Виленкина Н. Я. линейными уравнениями с одним неизвестным помимо уравнений вида a·x=b считали и уравнения, которые можно привести к такому виду с помощью переноса слагаемых из одной части уравнения в другую с противоположным знаком, а также с помощью приведения подобных слагаемых. Согласно этому определению, уравнения вида 5·x=2·x+6 , и т.п. тоже линейные.

В свою очередь в учебнике алгебры для 7 классов А. Г. Мордковича дается такое определение:

Определение.

Линейное уравнение с одной переменной x – это уравнение вида a·x+b=0 , где a и b – некоторые числа, называемые коэффициентами линейного уравнения.

К примеру, линейными уравнениями такого вида являются 2·x−12=0 , здесь коэффициент a равен 2 , а b – равен −12 , и 0,2·y+4,6=0 с коэффициентами a=0,2 и b=4,6 . Но в тоже время там приводятся примеры линейных уравнений, имеющие вид не a·x+b=0 , а a·x=b , например, 3·x=12 .

Давайте, чтобы у нас в дальнейшем не было разночтений, под линейным уравнениями с одной переменной x и коэффициентами a и b будем понимать уравнение вида a·x+b=0 . Такой вид линейного уравнения представляется наиболее оправданным, так как линейные уравнения – это алгебраические уравнения первой степени. А все остальные указанные выше уравнения, а также уравнения, которые с помощью равносильных преобразований приводятся к виду a·x+b=0 , будем называть уравнениями, сводящимися к линейным уравнениям . При таком подходе уравнение 2·x+6=0 – это линейное уравнение, а 2·x=−6 , 4+25·y=6+24·y , 4·(x+5)=12 и т.п. – это уравнения, сводящиеся к линейным.

Как решать линейные уравнения?

Теперь пришло время разобраться, как решаются линейные уравнения a·x+b=0 . Другими словами, пора узнать, имеет ли линейное уравнение корни, и если имеет, то сколько их и как их найти.

Наличие корней линейного уравнения зависит от значений коэффициентов a и b . При этом линейное уравнение a·x+b=0 имеет

  • единственный корень при a≠0 ,
  • не имеет корней при a=0 и b≠0 ,
  • имеет бесконечно много корней при a=0 и b=0 , в этом случае любое число является корнем линейного уравнения.

Поясним, как были получены эти результаты.

Мы знаем, что для решения уравнений можно переходить от исходного уравнения к равносильным уравнениям , то есть, к уравнениям с теми же корнями или также как и исходное, не имеющим корней. Для этого можно использовать следующие равносильные преобразования:

  • перенос слагаемого из одной части уравнения в другую с противоположным знаком,
  • а также умножение или деление обе частей уравнения на одно и то же отличное от нуля число.

Итак, в линейном уравнении с одной переменной вида a·x+b=0 мы можем перенести слагаемое b из левой части в правую часть с противоположным знаком. При этом уравнение примет вид a·x=−b .

А дальше напрашивается деление обеих частей уравнения на число a. Но есть одно но: число a может быть равно нулю, в этом случае такое деление невозможно. Чтобы справиться с этой проблемой, сначала будем считать, что число a отлично от нуля, а случай равного нулю a рассмотрим отдельно чуть позже.

Итак, когда a не равно нулю, то мы можем обе части уравнения a·x=−b разделить на a , после этого оно преобразуется к виду x=(−b):a , этот результат можно записать с использованием дробной черты как .

Таким образом, при a≠0 линейное уравнение a·x+b=0 равносильно уравнению , откуда виден его корень .

Несложно показать, что этот корень единственный, то есть, линейное уравнение не имеет других корней. Это позволяет сделать метод от противного.

Обозначим корень как x 1 . Предположим, что существует еще один корень линейного уравнения, который обозначим x 2 , причем x 2 ≠x 1 , что в силу определения равных чисел через разность эквивалентно условию x 1 −x 2 ≠0 . Так как x 1 и x 2 корни линейного уравнения a·x+b=0 , то имеют место числовые равенства a·x 1 +b=0 и a·x 2 +b=0 . Мы можем выполнить вычитание соответствующих частей этих равенств, что нам позволяют сделать свойства числовых равенств , имеем a·x 1 +b−(a·x 2 +b)=0−0 , откуда a·(x 1 −x 2)+(b−b)=0 и дальше a·(x 1 −x 2)=0 . А это равенство невозможно, так как и a≠0 и x 1 −x 2 ≠0 . Так мы пришли к противоречию, что доказывает единственность корня линейного уравнения a·x+b=0 при a≠0 .

Так мы решили линейное уравнение a·x+b=0 при a≠0 . Первый результат, приведенный в начале этого пункта, обоснован. Остались еще два, отвечающие условию a=0 .

При a=0 линейное уравнение a·x+b=0 принимает вид 0·x+b=0 . Из этого уравнения и свойства умножения чисел на нуль следует, что какое бы число мы не взяли в качестве x , при его подстановке в уравнение 0·x+b=0 получится числовое равенство b=0 . Это равенство верное, когда b=0 , а в остальных случаях при b≠0 это равенство неверное.

Следовательно, при a=0 и b=0 любое число является корнем линейного уравнения a·x+b=0 , так как при этих условиях подстановка вместо x любого числа дает верное числовое равенство 0=0 . А при a=0 и b≠0 линейное уравнение a·x+b=0 не имеет корней, так как при этих условиях подстановка вместо x любого числа приводит к неверному числовому равенству b=0 .

Приведенные обоснования позволяют сформировать последовательность действий, позволяющую решить любое линейное уравнение. Итак, алгоритм решения линейного уравнения таков:

  • Сначала по записи линейного уравнения находим значения коэффициентов a и b .
  • Если a=0 и b=0 , то это уравнение имеет бесконечно много корней, а именно, любое число является корнем этого линейного уравнения.
  • Если же a отлично от нуля, то
    • коэффициент b переносится в правую часть с противоположным знаком, при этом линейное уравнение преобразуется к виду a·x=−b ,
    • после чего обе части полученного уравнения делятся на отличное от нуля число a , что и дает искомый корень исходного линейного уравнения .

Записанный алгоритм является исчерпывающим ответом на вопрос, как решать линейные уравнения.

В заключение этого пункта стоит сказать, что похожий алгоритм применяется для решения уравнений вида a·x=b . Его отличие состоит в том, что при a≠0 сразу выполняется деление обеих частей уравнения на это число, здесь b уже находится в нужной части уравнения и не нужно осуществлять его перенос.

Для решения уравнений вида a·x=b применяется такой алгоритм:

  • Если a=0 и b=0 , то уравнение имеет бесконечно много корней, которыми являются любые числа.
  • Если a=0 и b≠0 , то исходное уравнение не имеет корней.
  • Если же a отлично от нуля, то обе части уравнения делятся на отличное от нуля число a , откуда находится единственный корень уравнения, равный b/a .

Примеры решения линейных уравнений

Переходим к практике. Разберем, как применяется алгоритм решения линейных уравнений. Приведем решения характерных примеров, соответствующих различным значениям коэффициентов линейных уравнений.

Пример.

Решите линейное уравнение 0·x−0=0 .

Решение.

В этом линейном уравнении a=0 и b=−0 , что то же самое, b=0 . Следовательно, это уравнение имеет бесконечно много корней, любое число является корнем этого уравнения.

Ответ:

x – любое число.

Пример.

Имеет ли решения линейное уравнение 0·x+2,7=0 ?

Решение.

В данном случае коэффициент a равен нулю, а коэффициент b этого линейного уравнения равен 2,7 , то есть, отличен от нуля. Поэтому, линейное уравнение не имеет корней.

Научиться решать уравнения — это одна из главных задач, которые ставит алгебра перед учениками. Начиная с простейшего, когда оно состоит из одной неизвестной, и переходя ко все более сложным. Если не усвоены действия, которые нужно выполнить с уравнениями из первой группы, будет трудно разобраться с другими.

Для продолжения разговора нужно договориться об обозначениях.

Общий вид линейного уравнения с одной неизвестной и принцип его решения

Любое уравнение, которое можно привести к записи такого вида:

а * х = в ,

называется линейным . Это общая формула. Но часто в заданиях линейные уравнения записаны в неявном виде. Тогда требуется выполнить тождественные преобразования, чтобы получить общепринятую запись. К этим действиям относятся:

  • раскрытие скобок;
  • перемещение всех слагаемых с переменной величиной в левую часть равенства, а остальных — в правую;
  • приведение подобных слагаемых.

В случае когда неизвестная величина стоит в знаменателе дроби, нужно определить ее значения, при которых выражение не будет иметь смысла. Другими словами, полагается узнать область определения уравнения.

Принцип, по которому решаются все линейные уравнения, сводится к тому, чтобы разделить значение в правой части равенства на коэффициент перед переменной. То есть «х» будет равен в/а.

Частные случаи линейного уравнения и их решения

Во время рассуждений могут возникать такие моменты, когда линейные уравнения принимают один из особых видов. Каждый из них имеет конкретное решение.

В первой ситуации:

а * х = 0 , причем а ≠ 0.

Решением такого уравнения всегда будет х = 0.

Во втором случае «а» принимает значение равное нулю:

0 * х = 0 .

Ответом такого уравнения будет любое число. То есть у него бесконечное количество корней.

Третья ситуация выглядит так:

0 * х = в , где в ≠ 0.

Это уравнение не имеет смысла. Потому что корней, удовлетворяющих ему, не существует.

Общий вид линейного уравнения с двумя переменными

Из его названия становится ясно, что неизвестных величин в нем уже две. Линейные уравнения с двумя переменными выглядят так:

а * х + в * у = с .

Поскольку в записи встречаются две неизвестные, то ответ будет выглядеть как пара чисел. То есть недостаточно указать только одно значение. Это будет неполный ответ. Пара величин, при которых уравнение превращается в тождество, является решением уравнения. Причем в ответе всегда первой записывают ту переменную, которая идет раньше по алфавиту. Иногда говорят, что эти числа ему удовлетворяют. Причем таких пар может быть бесконечное количество.

Как решить линейное уравнение с двумя неизвестными?

Для этого нужно просто подобрать любую пару чисел, которая окажется верной. Для простоты можно принять одну из неизвестных равной какому-либо простому числу, а потом найти вторую.

При решении часто приходится выполнять действия для упрощения уравнения. Они называются тождественными преобразованиями. Причем для уравнений всегда справедливы такие свойства:

  • каждое слагаемое можно перенести в противоположную часть равенства, заменив у него знак на противоположный;
  • левую и правую части любого уравнения разрешено делить на одно и то же число, если оно не равно нулю.

Примеры заданий с линейными уравнениями

Первое задание. Решить линейные уравнения: 4х = 20, 8(х — 1) + 2х = 2(4 — 2х); (5х + 15) / (х + 4) = 4; (5х + 15) / (х + 3) = 4.

В уравнении, которое идет в этом списке первым, достаточно просто выполнить деление 20 на 4. Результат будет равен 5. Это и есть ответ: х=5.

Третье уравнение требует того, чтобы было выполнено тождественное преобразование. Оно будет заключаться в раскрытии скобок и приведении подобных слагаемых. После первого действия уравнение примет вид: 8х — 8 + 2х = 8 — 4х. Потом нужно перенести все неизвестные в левую часть равенства, а остальные — в правую. Уравнение станет выглядеть так: 8х + 2х + 4х = 8 + 8. После приведения подобных слагаемых: 14х = 16. Теперь оно выглядит так же, как и первое, и решение его находится легко. Ответом будет х=8/7. Но в математике полагается выделять целую часть из неправильной дроби. Тогда результат преобразится, и «х» будет равен одной целой и одной седьмой.

В остальных примерах переменные находятся в знаменателе. Это значит, что сначала нужно узнать, при каких значениях уравнения определены. Для этого нужно исключить числа, при которых знаменатели обращаются в ноль. В первом из примеров это «-4», во втором оно «-3». То есть эти значения нужно исключить из ответа. После этого нужно умножить обе части равенства на выражения в знаменателе.

Раскрыв скобки и приведя подобные слагаемые, в первом из этих уравнений получится: 5х + 15 = 4х + 16, а во втором 5х + 15 = 4х + 12. После преобразований решением первого уравнения будет х = -1. Второе оказывается равным «-3», это значит, что последнее решений не имеет.

Второе задание. Решить уравнение: -7х + 2у = 5.

Предположим, что первая неизвестная х = 1, тогда уравнение примет вид -7 * 1 + 2у = 5. Перенеся в правую часть равенства множитель «-7» и поменяв у него знак на плюс, получится, что 2у = 12. Значит, у=6. Ответ: одно из решений уравнения х = 1, у = 6.

Общий вид неравенства с одной переменной

Все возможные ситуации для неравенств представлены здесь:

  • а * х > в;
  • а * х < в;
  • а * х ≥в;
  • а * х ≤в.

В общем, оно выглядит как простейшее линейное уравнение, только знак равенства заменен на неравенство.

Правила тождественных преобразований неравенства

Так же как линейные уравнения, и неравенства можно видоизменять по определенным законам. Они сводятся к следующему:

  1. к левой и правой частям неравенства можно прибавить любое буквенное или числовое выражение, причем знак неравенства останется прежним;
  2. также можно и умножить или разделить на одно и то же положительное число, от этого опять знак не изменяется;
  3. при умножении или делении на одно и то же отрицательное число равенство останется верным при условии смены знака неравенства на противоположный.

Общий вид двойных неравенств

В задачах могут быть представлены такие варианты неравенств:

  • в < а * х < с;
  • в ≤ а * х < с;
  • в < а * х ≤ с;
  • в ≤ а * х ≤ с.

Двойными оно называется, потому что ограничено знаками неравенства с двух сторон. Оно решается с помощью тех же правил, что и обычные неравенства. И нахождение ответа сводится к ряду тождественных преобразований. Пока не будет получено простейшее.

Особенности решения двойных неравенств

Первой из них является его изображение на координатной оси. Использовать этот способ для простых неравенств нет необходимости. А вот в сложных случаях он может быть просто необходимым.

Для изображения неравенства нужно отметить на оси все точки, которые получились во время рассуждений. Это и недопустимые значения, которые обозначаются выколотыми точками, и значения из неравенств, получившиеся после преобразований. Здесь тоже важно правильно нарисовать точки. Если неравенство строгое, то есть < или >, то эти значения выколотые. В нестрогих неравенствах точки нужно закрашивать.

Потом полагается обозначить смысл неравенств. Это можно сделать с помощью штриховки или дуг. Их пересечение укажет ответ.

Вторая особенность связана с его записью. Здесь предлагается два варианта. Первый — это окончательное неравенство. Второй — в виде промежутков. Вот с ним бывает, что возникают трудности. Ответ промежутками всегда выглядит как переменная со знаком принадлежности и скобок с числами. Иногда промежутков получается несколько, тогда между скобками нужно написать символ «и». Эти знаки выглядят так: ∈ и ∩. Скобки промежутков тоже играют свою роль. Круглая ставится тогда, когда точка исключена из ответа, а прямоугольная включает это значение. Знак бесконечности всегда стоит в круглой скобке.

Примеры решения неравенств

1. Решить неравенство 7 - 5х ≥ 37.

После несложных преобразований получается: -5х ≥ 30. Разделив на «-5» можно получить такое выражение: х ≤ -6. Это уже ответ, но его можно записать и по-другому: х ∈ (-∞; -6].

2. Решите двойное неравенство -4 < 2x + 6 ≤ 8.

Сначала нужно везде вычесть 6. Получится: -10 < 2x ≤ 2. Теперь нужно разделить на 2. Неравенство примет вид: -5 < x ≤ 1. Изобразив ответ на числовой оси, сразу можно понять, что результатом будет промежуток от -5 до 1. Причем первая точка исключена, а вторая включена. То есть ответ у неравенства такой: х ∈ (-5; 1].

Линейным уравнением с неизвестными x 1 , х 2 , ..., x n называют уравнение вида

A 1 x 1 + a 2 x 2 + …+ a n x n = b;

числа a и a 2 , a 2 , ..., a n называют коэффициентами при неизвестных, число b - свободным членом уравнения.

Линейные уравнения с одним неизвестным умели решать еще в Древнем Вавилоне и в Египте более чем 4 тыс. лет назад. Приведем, например, задачу из папируса Ринда (его называют также папирусом Ахмеса) , хранящегося в Британском музее и относящегося к периоду 2000–1700 гг. до н. э.: «Найти число, если известно, что от прибавления к нему 2/3 его и вычитания от полученной суммы её трети получается число 10». Решение этой задачи сводится к решению линейного уравнения

x + (2/3)x − (1/3)(x + (2/3)x) = 10, откуда x = 9.

Приведем также задачу Метродора, о жизни которого ничего не известно, кроме того, что он автор интересных задач, составленных в стихах.

Здесь погребен Диофант, и камень могильный
При счете искусном расскажет нам,
Сколь долог был его век.
Велением бога он мальчиком был шестую часть своей жизни;
В двенадцатой части затем прошла его светлая юность.
Седьмую часть жизни прибавим - перед нами очаг Гименея.
Пять лет протекли; и прислал Гименей ему сына.
Но горе ребенку! Едва половину он прожил
Тех лет, что отец, как скончался несчастный.
Четыре года страдал Диофант от утраты такой тяжелой
И умер, прожив для науки. Скажи мне,
Скольких лет достигнув, смерть восприял Диофант?

Решая линейное уравнение

(1/6)x + (1/12)x +(1/7)x + 5 + (1/2)x + 4 = x,

находим, что x = 84 - столько лет прожил Диофант.

Сам Диофант много внимания уделял неопределенным уравнениям (так называют алгебраические уравнения или системы таких уравнений с двумя и большим числом неизвестных с целыми коэффициентами, для которых разыскиваются целые или рациональные решения; число неизвестных должно быть больше числа уравнений). Эти уравнения называются диофантовыми уравнениями. Правда, Диофант, живший на рубеже II–III вв., в основном занимался неопределенными уравнениями более высоких степеней.

Систему алгебраических уравнений, каждое из которых имеет вид (1), называют линейной системой. Коэффициенты уравнений, входящих в систему, нумеруют обычно двумя индексами, первый из которых - номер уравнения, а второй (как и в (1)) - номер неизвестного. Например, систему m уравнений с n неизвестными записывают в виде

$\left. \begin{aligned} {{a}_{11}}{{x}_{1}}+{{a}_{12}}{{x}_{2}}+\ldots+{{a}_{1n}}{{x}_{n}}={{b}_{1}}, \\ {{a}_{21}}{{x}_{1}}+{{a}_{22}}{{x}_{2}}+\ldots+{{a}_{2n}}{{x}_{n}}={{b}_{2}}, \\ {{a}_{m1}}{{x}_{1}}+{{a}_{m2}}{{x}_{2}}+\ldots+{{a}_{mn}}{{x}_{n}}={{b}_{m}}. \\ \end{aligned} \right\}(2)$

Рассмотрим систему двух линейных уравнений с двумя неизвестными:

$\left. \begin{aligned} {{a}_{11}}{{x}_{1}}+{{a}_{12}}{{x}_{2}}={{b}_{1}}, \\ {{a}_{21}}{{x}_{1}}+{{a}_{22}}{{x}_{2}}={{b}_{2}}, \\ \end{aligned} \right\}(3)$

Умножим первое уравнение системы (3) на a 22 и вычтем из полученного уравнения второе, умноженное на a 12 ; аналогично умножим второе уравнение системы (3) на a 11 и вычтем из полученного уравнения первое, умноженное на a 21 . После этого получится система:

$\left. \begin{aligned} (a 11 a 22 - a 12 a 21)x 2 = a 11 b 2 -b 1 a 21 , (a 11 a 22 - a 12 a 21)x 1 = b 1 a 22 - a 12 b 2 , \end{aligned} \right\}(4)$

$\left. \begin{aligned} (a_{11}a_{22}−a_{12}a_{21})x_2 = a_{11}b_2−b_1a_{21}, \\ (a_{11}a_{22}−a_{12}a_{21})x_1 = b_1a_{22}−a_{12}b_2, \\ \end{aligned} \right\}(4)$

которая есть следствие системы (3). Систему (4) можно записать в виде

$\left. \begin{aligned} Δ⋅x_1=Δ_1, \\ Δ⋅x_2=Δ_2, \\ \end{aligned} \right\}(5)$

где ∆ - определитель матрицы, составленной из коэффициентов системы (см. Определитель), ∆ i - определители матриц, получаемых из предыдущей заменой i‑го столбца на столбец из свободных членов, i = 1,2. Далее, если ∆ ≠ 0, то система (5) имеет единственное решение:

x 1 = ∆ 1 /∆, x 2 = ∆ 2 /∆.

Непосредственной подстановкой проверяется, что эта пара чисел является также и решением системы (3). По такому же правилу ищут решение системы n линейных уравнений с n неизвестными: если определитель системы ∆ отличен от нуля, то система имеет единственное решение, причем

x i = ∆ i /∆

где ∆ i - определитель матрицы, получаемой из матрицы, составленной из коэффициентов системы, заменой в ней i‑го столбца на столбец из свободных членов. Описанное правило решения линейных систем носит название правила Крамера. (Г. Крамер - швейцарский математик, 1704–1752).

Если ∆ = 0, то должны обращаться в нуль и ∆ 1 и ∆ 2 (иначе (5), а тем более (3) не имеет решений). При выполнении условия ∆ = ∆ 1 = ∆ 2 = 0, если соответственные коэффициенты при неизвестных и свободные члены уравнения системы (3) пропорциональны, то система будет иметь бесконечно много решений; если хотя бы один из коэффициентов при неизвестных отличен от нуля (например, если a 12 ≠ 0), то x 1 , можно взять любым, тогда

x 2 = b 1 /a 12 − a 11 x 1 /a 12

Осталось разобрать случай, когда система имеет вид

$\left. \begin{aligned} 0⋅x_1+,0⋅x_2=b_, \\ 0⋅x_1+,0⋅x_2=b_, \\ \end{aligned} \right\}$

для которого ответ очевиден: если b 1 = b 2 = 0, то решением является любая пара чисел, в противном случае решений нет.

В общем случае для системы из n уравнений с n неизвестными при ∆ ≠ 0 система имеет единственное решение, которое, как уже говорилось, можно найти по правилу Крамера. Если ∆ = 0 и хотя бы один из определителей ∆ i , отличен от нуля, система несовместна (т. е. не имеет решений). В случае, когда ∆ = ∆ 1 = ∆ 2 = ... = ∆ n = 0, система может либо быть несовместной, либо иметь бесконечно много решений. Установить, какой из этих двух случаев реализуется с помощью определителей, довольно сложно, и мы этим заниматься не будем. На практике для решения линейных систем правилом Крамера обычно не пользуются. Чаще всего для этих целей применяют метод Гаусса (см. Неизвестных исключение).

Как известно, линейное уравнение a 1 x 1 + a 2 x 2 = b определяет прямую на плоскости (x 1 ; x 2) в случае, когда хотя бы один из коэффициентов a 1 и a 2 отличен от нуля. Если мы возьмем на плоскости две прямые то возможны следующие случаи (см. рисунок): 1) прямые параллельны и не имеют общих точек, и тогда система не имеет решений; 2) прямые пересекаются, и тогда система имеет одно решение; 3) прямые совпадают, и тогда система имеет бесконечно много решений. Но две «случайно» взятые прямые, «как правило», будут пересекаться, т. е., как правило, система двух линейных уравнений с двумя переменными будет иметь одно решение. Любая точка некоторой прямой на плоскости соответствует решению «системы» (состоящей из одного уравнения), т. е., как правило, имеет место случай 3 (случай 2 невозможен, а случай 1 реализуется, если мы возьмем уравнение 0 x 1 + 0 x 2 = b, где b ≠ 0, не определяющее прямой на плоскости). Если же на плоскости взять 3 или больше прямых, то, вообще говоря, они могут все совпадать или проходить через одну точку, но, как правило, имеет место первый случай - у прямых нет общей точки.