Работа с линиями вероятности и выбор плана будущего в собственной Искре. Практика. Цельность вашей жизни -иллюзия

Нас часто интересует вероятность одновременного наступления нескольких событий, например выпадения двух орлов при двух бросках монеты или по крайней мере одной шестерки при двух бросках игральной кости. Ситуации такого рода называются ситуациями с несколькими возможными исходами.


Использование древовидных диаграмм


Хотя довольно легко понять, что вероятность выпадения орла при одном броске «честной» монеты равна?, интуитивно определить вероятность выпадения четырех орлов при четырех бросках «честной» монеты несколько труднее. Хотя пример с монетой может показаться искусственным, он хорошо подходит для объяснения сочетания вероятностей при нескольких попытках. Давайте произведем расчеты. (Следите за моими рассуждениями, даже если вы панически боитесь математики. Если вы поработаете над примерами, вычисления и математические рассуждения покажутся вам довольно простыми. Не надо восклицать, взглянув на следующие несколько цифр: «Нет, ни в коем случае, я это просто пропущу». Важно уметь думать с числами и о числах.)

При первом броске может наступить лишь один из двух возможных исходов; орел (О) или решка (Р). Что произойдет, если монету бросят дважды? Существует четыре возможных исхода: орел оба раза (ОО), орел в первый раз и решка во второй раз (ОР), решка в первый раз и орел во второй раз (РО) и решка оба раза (РР). Поскольку существует четыре возможных исхода и лишь один способ выпадения двух орлов, то вероятность этого события равна 1/ 4 (опять-таки мы предполагаем, что монета – «честная», т. е. выпадение орла и решки равновероятно). Существует общее правило для вычисления вероятности совместного появления нескольких событий в любой ситуации – правило «и». Если вы хотите найти вероятность совместного появления первого и второго события (орел при первом и при втором броске), надо перемножить вероятности наступления этих событий по отдельности. Применяя правило «и», мы находим, что вероятность появления двух решек при двукратном броске монеты равна? x ? = 1/ 4 . Интуитивно кажется, что вероятность совместного появления двух событий должна быть меньше, чем вероятность каждого из них в отдельности; так оно и оказывается.

Простой способ расчета этой вероятности получается, если представить все возможные события с помощью древовидной диаграммы. Древовидные диаграммы использовались в главе 4, когда мы проверяли правильность утверждений типа «если… то…». В этой главе мы припишем ветвям дерева вероятностные значения, чтобы определить вероятности различных сочетаний исходов. В последующих главах я еще вернусь к древовидным диаграммам при рассмотрении способов нахождения творческих решений задач.

При первом броске монеты она упадет или орлом, или решкой вверх. Для «честной» монеты выпадения орла и решки имеют одинаковую вероятность, равную 0,5. Давайте изобразим это следующим образом:

Когда вы бросаете монету второй раз, то либо за первым орлом последуют второй орел или решка, либо за первой решкой последуют второй орел или решка. Вероятности выпадения орла и решки при втором броске по-прежнему равны 0,5. Исходы второго броска изображаются на диаграмме в виде дополнительных ветвей дерева.




Как видно из диаграммы, существует четыре возможных исхода. Вы можете пользоваться этим деревом для нахождения вероятностей других событий. Чему равна вероятность получения одной решки при двух бросках монеты? Поскольку существует два способа, которыми можно получить одну решку (ОР или РО), ответ равен 2 / 4 или?. Если вы хотите найти вероятность двух или более различных исходов, сложите вероятности всех исходов. Это называется правилом «или». По-другому эту задачу можно сформулировать так: «Чему равна вероятность получить или сначала орла, а потом решку (1/ 4), или сначала решку, а потом орла (1/4)?» Правильная процедура нахождения ответа состоит в том, чтобы сложить эти значения, в результате чего получается?. Интуитивно кажется, что вероятность появления одного из нескольких событий должна быть больше, чем вероятность появления каждого из них; так оно и оказывается.

Правилами «и» и «или» можно пользоваться только тогда, когда интересующие нас события независимы. Два события независимы, если появление одного из них не влияет на появление второго. В рассматриваемом примере результат первого броска монеты никак не влияет на результат второго броска. Кроме того, для применения правила «или» необходимо, чтобы события были несовместимыми, т. е. не могли происходить одновременно. В рассматриваемом примере исходы являются несовместимыми, поскольку мы не можем получить и орла, и решку при одном броске.

Представление событий в виде древовидных диаграмм полезно во многих ситуациях. Давайте расширим наш пример. Предположим, что мужчина в полосатом костюме с длинными, подкрученными вверх усами и бегающими маленькими глазками останавливает вас на улице и предлагает сыграть на деньги, бросая монету. Он все время ставит на орла. При первом броске монета падает орлом вверх. При втором броске происходит то же самое. При третьем броске опять выпадает орел. Когда вы начнете подозревать, что у него «нечестная» монета? У большинства людей сомнения возникают при третьей или четвертой попытке. Вычислите вероятность выпадения одних орлов при трех и четырех бросках «честной» монеты (вероятность выпадения орла равна 0,5).

Для расчета вероятности выпадения трех орлов в трех попытках вам надо нарисовать дерево с тремя рядами «узлов», причем из каждого узла исходят две «ветви».




В этом примере нас интересует вероятность выпадения трех орлов подряд при условии, что монета «честная». Посмотрите на столбец, озаглавленный «исход», и найдите исход ООО. Поскольку это единственный исход с тремя орлами, перемножьте вероятности вдоль ветви 000 (обведенной на диаграмме) и вы получите 0,5 х 0,5 х 0,5 = 0,125. Вероятность 0,125 означает, что если монета «честная», то в среднем она будет падать орлом вверх три раза подряд в 12,5% случаев. Поскольку эта вероятность невелика, то при выпадении трех орлов подряд большинство людей начинает подозревать, что монета «с секретом».

Для расчета вероятности выпадения четырех орлов в четырех попытках добавьте к дереву дополнительные ветви.



Вероятность выпадения четырех орлов равна 0,5 х 0,5 х 0,5 х 0,5 = 0,0625, или 6,25%. Как вы уже знаете, математически она равна 0,5 4 ; т. е. умножить число само на себя четыре раза – это то же самое, что возвести его в четвертую степень. Если вы будете считать на калькуляторе, где есть операция возведения в степень, то вы получите тот же самый ответ – 0,0625. Хотя такой исход возможен и когда-нибудь произойдет, он маловероятен. На самом деле он настолько неправдоподобен и необычен, что многие сказали бы, что человек с бегающими глазками, наверное, жульничает. Несомненно, что при выпадении пятого орла подряд разумно будет заключить, что вы имеете дело с мошенником. Для большинства научных целей событие считается «необычным», если его появление ожидается с вероятностью менее 5%. (На языке теории вероятностей это записывается так: р ‹ 0,05.)

Давайте оставим искусственный пример с монетой и применим ту же логику в более полезном контексте. Я уверена, что любой студент когда-либо сталкивался с тестами с выбором вариантов, в которых нужно выбирать из предложенных вариантов правильные ответы. В большинстве таких тестов на каждый вопрос предлагается пять вариантов ответов, из которых правилен только один. Предположим, что вопросы настолько трудны, что вы можете только случайно угадать правильный ответ. Какова вероятность правильного угадывания при ответе на первый вопрос? Если вы понятия не имеете, какой из вариантов является правильным ответом, то вы с одинаковой вероятностью можете выбрать любой из пяти вариантов, предполагая, что любой из них может оказаться правильным. Поскольку сумма вероятностей выбора всех вариантов должна быть равна единице, то вероятность выбора каждого из вариантов при равновероятности всех вариантов равна 0,20. Один из вариантов правильный, а остальные – неправильные, поэтому вероятность выбора правильного варианта равна 0,20. Древовидная диаграмма этой ситуации изображена ниже.




Какова вероятность правильно угадать ответы на первые два вопроса теста? Нам придется добавить новые ветви к дереву, которое вскоре станет очень густым. Чтобы сэкономить место и упростить вычисления, можно представить все неправильные варианты в виде одной ветви, обозначенной «неправильные». Вероятность ошибиться при ответе на один вопрос равна 0,8.




Вероятность правильно угадать ответы на два вопроса равна 0,2 х 0,2 = 0,04. То есть случайно это может произойти только в 4% попыток. Допустим, что мы расширим наш пример до трех вопросов. Я не буду рисовать дерево, но вы должны уже понять, что вероятность равна 0,2 х 0,2 х 0,2 = 0,008. Это настолько необычное событие, что оно может произойти случайно менее чем в 1 % попыток. Что вы подумаете о человеке, которому удалось правильно ответить на все три вопроса? Большинство людей (а преподаватели тоже люди) заключит, что студент не выбирал ответы наугад, а действительно что-то знал. Конечно, не исключено, что ему просто повезло, но это чрезвычайно маловероятно. Таким образом, мы приходим к выводу, что полученный результат не может объясняться только удачей.

Мне хотелось бы отметить одну любопытную сторону таких рассуждений. Рассмотрим плачевную ситуацию, в которую попала Сара. Она отвечала на 15 вопросов теста, где ответ на каждый вопрос надо было выбирать из пяти вариантов. Сара ответила неправильно на все 15 вопросов. Можете ли вы определить вероятность того, что это произошло случайно? Я не буду рисовать древовидную диаграмму для иллюстрации этой ситуации, но легко видеть, что вероятность ошибиться при ответе на один вопрос равна 0,8; поэтому вероятность неправильно ответить на все 15 вопросов равна 0,8 15 . Это число 0,8, умноженное само на себя 15 раз, в результате чего получается 0,0352. Поскольку вероятность такой случайности равна 3,52%, может быть, Саре стоит заявить преподавателю, что такой необычный результат не может объясняться случайностью? Сара, конечно, может привести подобный довод, но поверили бы вы ей на месте преподавателя? Предположим, она утверждает, что знала ответы на все вопросы. Как иначе она смогла бы не выбрать правильный вариант ответа в 15 вопросах подряд? Я не знаю, сколько преподавателей поверили бы ее утверждению, что 15 неверных ответов доказывают наличие у нее знаний, хотя в принципе такой ход рассуждений используется для доказательства наличия знаний, поскольку вероятность правильно угадать все ответы примерно такая же. (В этом примере вероятность наугад ответить правильно на все 15 вопросов равна 0,20 15 ; это число значительно меньше 0,0001.) Если бы преподавателем Сары была я, то я бы поставила ей высокие оценки за творческий подход и понимание статистических принципов. Не исключено, что Сара действительно что-то знала на эту тему, но в этом «чем-то» была систематическая ошибка. Я бы также указала ей на то, что, возможно, она не подготовилась к тесту, а вдобавок ей еще и не повезло, и она сделала 15 неверных догадок. В конце концов, иногда случаются и очень необычные события.

Перед тем как перейти к чтению следующего раздела, проверьте, понимаете ли вы, как применять древовидные диаграммы для расчета вероятностей и учета всех возможных исходов. В этой главе я еще вернусь к таким диаграммам. Когда вы научитесь их использовать, вы будете удивлены, как много существует ситуаций, в которых они могут применяться.

Ночь. Свет полной луны, висящей на звездном небе, через витражи на окнах освещал мрачные коридоры Змиулана, от стен которых отражался гулкий звук бега. -Ну что за девчонка! - сбивая дыхание, пробурчал Фэш. - Испугалась она, понимаешь ли… Только время зря потерял! Надеюсь, мне всё же удастся сбежать…в этот раз… Несясь к Каменной Зале, он молился, чтобы ему никто не попался на пути. Но всё произошло с точностью да наоборот. Во тьме коридоров (где не удосужились сделать окна) Драгоций столкнулся с кем-то, услышав знакомый голос: ,Кто тут носится, как угорелый?! "". Брюнет вызвал часовую стрелу и зажег на острие её огонек. В свет импровизированного светильника попала… Василиса?! -Ты?! - одновременно воскликнули эти двое. Фэш испытал одновременно с удивлением и облегчение: всё-таки с Огневой они в ладах, и его она не сдаст…ну, он на это надеялся. Парень подумал, что рыжеволосая испытала нечто подобное. -Что ты здесь делаешь? - протянул Василисе руку Драгоций. Та, приняв помощь, поднялась и отряхнулась: -Тот же вопрос хотелось бы задать тебе. -Я первый спросил, - скрестил руки на груди Фэш. -Не важно. Вообще, это не твоё дело, - огрызнулась Василиса. -Ну, значит, и то, что я делаю, не твое дело, - спокойно пожал плечами Драгоций. Рыжеволосая поджала губы и задумчиво взглянула на брюнета: -Я скажу только после тебя. -Ну…я… - начал Фэш, пытаясь подобрать слова, но ничего не выходило. - Ладно, я хочу сбежать, - выпалил Драгоций. Глаза Василисы расширились: -Ты что, умом тронулся? Фэш закатил глаза и раздраженно взглянул на Огневу: -Нет, но я не хочу оставаться здесь. -Если тебя поймают, то накажут. Вспомни, что было в прошлые разы, - скрестила руки на груди рыжеволосая. Драгоций скривился: -Слушай, лучше не мешай мне. Василиса задумчиво взглянула на брюнета: -Хорошо, мешать не буду…тем более, я сегодня такая добрая, что даже сдавать тебя не буду, - хихикнула Огнева и, развернувшись, хотела уходить, но Фэш остановил её окликом: -Василиса, - девушка развернулась и выжидающе взглянула на брюнета, - спасибо, - улыбнулся Драгоций и убежал. Огнева улыбнулась и направилась к себе… *** -Это было огромной ошибкой, племянник, - Астрагор возвышался над лежащим полуголым Фэшем. Ученики стали тихо перешептываться. - Ты не раз пытался сбежать и всегда получал наказание… - Шакл, который пришел специально для исполнения расправы, достал один из прутьев и взмахнул пару раз. Послышался хлесткий звук. -Надеюсь, ты всё-таки поймешь, что бежать бесполезно, - великий дух Осталы повернулся к провинившемуся спиной, лицом - к остальным ученикам: -Думаю, это послужит примером и вам. Прут, рассекая воздух, тут же прошелся по спине Фэша, оставляя красные, даже кровавые полосы. Удар за ударом. Брюнет стоически выносил все удары, лишь иногда издавая полустон - полурык. Ученики смотрели на это с неким ехидством. Только Василиса и Захарра взволнованно смотрели на брюнета… *** Фэш сидел в темнице и раздумывал. Раньше его просто сажали в подземелье, оставляя без еды, но сейчас, видимо, дяде надоело, что его племянник наказан так легко. Брюнет повел плечом, болезненно скривившись. Он не обращал внимания на холод, сырость, погрузившись в свои мысли. Из раздумий его вывел звук шагов, раздавашийся по коридору. Вскоре под свет факела вышла Василиса. Фэш тут же подошел к решетке: -Ты чего здесь делаешь? -Держи, - Огнева между прутьями просунула руку и отдала Драгоцию довольно приличный кусок еще теплого хлеба с семечками. Фэш принял еду. -И что это за приступы щедрости? - усмехнулся он. -Это Захарра попросила передать. Ее не пропускали, - пожала плечами Огнева. -То есть, Захарру не пустили, а тебя, ту, что не является родственницей Астрагора, спокойно пропустили? - усмехнулся брюнет. -Ну, это не я решаю, - Василиса вновь пожала плечами, правда, Фэш в её глазах заметил волнение. -Ну, я спрошу потом у Захарры об этом, - спокойно сказал Драгоций, откусив немного хлеба. -Спроси, а мне пора уже, - Огнева развернулась и спокойно прошла до угла и завернула за него. Вскоре Фэш услышал звуки бега и усмехнулся. ,Всё-таки это её инициатива. Наверное, к сестричке побежала договариваться на всякий случай""…

Ваш номер двенадцатый, - произнес фир, записывая что-то в книжечку. Фэш поблагодарил мужчину и полетел к своему домику. ,Теперь главное не налажать. Надеюсь, фея не подведет, когда мы будем выступать…"" - с этими мыслями брюнет приземлился на ветку рядом с беседкой, где его уже ждали двое. -Наконец-то ты пришел, - с улыбкой помахал ему рукой один из ждущих, Ник. Сероглазая девушка с тёмным каре, являющаяся второй персоной, в знак приветствия лишь кивнула, перейдя сразу к делу: - И под каким номером мы выступаем? - спросила она, ставя чашки с ароматным кофе на столик. -Двенадцать, - садясь за стол, ответил парень. - Нам нужно прорепетировать: мы должны знать, как мы звучим все втроём. -Мы не обязаны выступить очень хорошо, Драгоций, - тут же охладила его девушка, - это прикрытие. Ты просто получишь после выступления ключ от нашей повелительницы, как и было обещано, - при этих словах Фэш скривился так, будто съел лимон, - а Ник пройдёт посвящение. -Я не хочу ударить в грязь лицом перед всем двором, - ответил Драгоций. -Фэш, Диана, - поочередно глядя на этих двоих, взмолился Ник, - пожалуйста, прекратите. Думаю, нам действительно стоит прорепетировать. -Настроение не песенное, - буркнул Фэш и, даже не поев, ушёл к себе в комнату. *несколько дней назад* - Итак, - с радостной улыбкой произнес Константин, собравший Фэша и Ника в мастерской, - У меня есть две новости. Первая: я договорился с Белой Королевой о твоём посвящение, Ник. - Как у вас это вышло? - удивлённо посмотрел на Лазарева Фэш. -Потом расскажу, - улыбнулся отец Ника. - сынок, не мог бы ты оставить нас? - блондин вышел из комнаты, закрыв за собой дверь. Константин посерьезнел, переведя взгляд на брюнета: -Фэш, Астариус просил меня передать, что Белая королева обещала ему Серебряный ключ. Ты должен отправиться в Чародол, поучаствовать в Чарованиях и забрать Серебряный ключ у Королевы, - Драгоций был поражён тем, что именно ему Астариус доверил нести этот ключ, пусть он и слышал об этом второй раз. Учитель уже предупредил его, объяснив это тем, что брюнет сбежал от Астрогора… *** Их выступление произвело фурор в королевстве фей: шестикрылые создания поднимали вверх часовые стрелы, аплодировали и восторженно кричали. Опасения Фэша были напрасны, чему он был рад. Вскоре ему на часолист пришло письмо, в котором говорилось, что он, как победитель Чарований, должен прийти в полночь в Белый Замок. Брюнет подошёл к беседке, где уже сидели Ник и Диана, которые тоже были рады тому, что выступление прошло успешно. -Ну что, - в шутливой манере обратился он к Фрезер, - сопроводите ли вы нас в Белый Замок, госпожа фрейлина? - Ник фыркнул в чашку, а Диана лишь улыбнулась. -Почему ты не сказала, что являешься фрейлиной? - Фэш сел за стол - Я себя дураком чувствовал, когда ко мне подходили и говорили, что моё выступление с госпожой Дианой Фрезер, фрейлиной её величества, произвело фурор! - ни Ник, ни Диана не смогли сдержать смешка… *полночь* -Фэшиар Драгоций, - Белая Королева, вставшая с трона, украшенного на спинке золотыми веточками с изумрудными листьями, махнула рукой одной из девушек, - за победу на чарованиях и обещания Астариусу, я дарую тебе Серебряный ключ. Думаю, ты знаешь, что это огромная ответственность. Защищай его, храни, как зеницу ока. -Я обещаю, - кивнул Фэш, уверенно смотря на Королеву фей. Дверь отворилась, и девушка внесла Серебряный ключ, покоящийся на подушке из красного шелка. Фея подошла к нему и остановилась в поклоне, протягивая подушку с ключом. Фэш аккуратно взял ключ и поклонился Королеве: -Покорно благодарю за оказанную мне честь. Правительница фей кивнула и махнула рукой, разрешая Фэшу отправляться в домик для отдыха. Ника забрали ещё в начале для того, чтобы он прошел посвещение. *** -…и мне дали какое-то часовое зелье. Ну, я и выпил его. В итоге, третья часовая степень, - радостно улыбался Ник, рассказывая другу о том, что произошло с ним в Белом Замке. Диана сидела с ними и спокойно выпивала кофе, поедая булочку. -У меня, между прочим, тоже новость есть, отставив чашку в сторону, улыбнулась Диана, положив на стол небольшой железный ключик. С секунду Фэш и Ник удивлённо смотрели то на ключ, то на девушку, но в следующий момент Драгоций вскочил со своего места и кинулся обнимать Диану, радостно улыбаясь. -Я знал! - воскликнул он. покрасневшая фея еле вырвалась из объятий парня: -Во-первых, отпусти, задушишь же! Во-вторых, как же узнал? - -Догадаться, конечно, было несложно, - сообщил довольный Фэш. - Придворная фея, лучшая ученица, да еще и отчаянная… Я догадался, что ты тоже ключница, сразу, как только тебя увидел. -Да, - протянул отошедший от удивления Ник, - встреча в лесу с тобой была немного неожиданна. -Да что же неожиданного было? - с интересом взглянула Диана на друга. -Например, то, что ты неожиданно выпрыгнула на нас из темноты, - вставил Фэш. -Да, - кивнул младший-теперь-уже-часовщик Лазарев, - Мы, конечно, знали, что встретим тебя в лесу, но не стоило выпрыгивать так неожиданно на нас из темноты. -Зато как хорошо, что мы сразу отправились в Чародол, - хмыкнул Драгоций. Ребята согласно кивнули и продолжили завтрак…

Для построения дерева вероятностей прежде всего необходимо нарисовать са­мо дерево, затем записать на рисунке всю известную для данной задачи инфор­мацию и, наконец, воспользоваться основными правилами, чтобы вычислить не­достающие числа и закончить дерево.

1. Вероятности указываются в каждой из конечных точек и обводятся кружоч­ками. На каждом уровне дерева сумма этих вероятностей должна равняться 1 (или 100%). Так, например, на рис. 6.5.1 сумма вероятностей на первом уров­не составляет 0,20 + 0,80 = 1,00 и на втором уровне - 0,03 + 0,17 + 0,56 + 0,24 = 1,00. Это правило помогает заполнить один пустой кружок в столбце, если значения всех остальных вероятностей этого уровня известны.

Рис. 6.5.1

2. Условные вероятности указываются рядом с каждой из ветвей (кроме,
возможно, ветвей первого уровня). Для каждой из групп ветвей, выходящих из одной точки, сумма этих вероятностей также равна 1 (или 100%).
Например, на рис. 6.5.1 для первой группы ветвей получаем 0,15 + 0,85 =
1,00 и для второй группы - 0,70 + 0,30 = 1,00. Это правило позволяет
вычислить одно неизвестное значение условной вероятности в группе вет­вей, исходящих из одной точки.

3. Обведенная кругом в начале ветви вероятность, умноженная на условную
вероятность рядом с этой ветвью, дает вероятность, записанную в круге в
конце ветви. Например, на рис. 6.5.1 для верхней ведущей вправо ветви
имеем 0,20 х 0,15 = 0,03, для следующей ветви - 0,20 х 0,85 = 0,17; аналогичные соотношения выполняются и для других двух ветвей. Это правило можно использовать для вычисления одного неизвестного значения
вероятности из трех, соответствующих некоторой ветви.

4. Записанное в круге значение вероятности равно сумме обведенных кружками вероятностей на концах всех ветвей, выходящих из этого круга
вправо. Так, например, для рис. 6.5.1 из круга со значением 0,20 выходят
две ветви, на концах которых находятся обведенные кружками вероятности, сумма которых равна этому значению: 0,03 + 0,17 = 0,20. Это правило позволяет найти одно неизвестное значение вероятности в группе,
включающей эту вероятность и все вероятности на концах ветвей дерева,
выходящих из соответствующего круга.

Используя эти правила можно, зная все, кроме одного значения вероятности для некоторой ветви или на некотором уровне, находить это неизвестное значение.

37. Какая выборка называется репрезентативной? Каким образом можно извлечь репрезентативную выборку?

Репрезентативность - это способность выборки представлять изучаемую совокупность. Чем точнее состав выборки представляет совокупность по изучаемым вопросам, тем выше ее репрезентативность.



Репрезентативная выборка (representative sample) - одно из ключевых понятий анализа данных. Репрезентативная выборка - это выборка из генеральной совокупности с распределением F (x ), представляющая основные особенности генеральной совокупности. Например, если в городе проживает 100 000 человек, половина из которых мужчины и половина женщины, то выборка 1000 человек из которых 10 мужчин и 990 женщин, конечно, не будет репрезентативной. Построенный на ее основе опрос общественного мнения, конечно, будет содержать смещение оценок и приводит к фальсификации результатов.

Необходимым условием построения репрезентативной выборки является равная вероятность включения в нее каждого элемента генеральной совокупности.

Выборочная (эмпирическая) функция распределения дает при большом объеме выборки достаточно хорошее представление о функции распределения F (x ) исходной генеральной совокупности.

Ведущий принцип, лежащий в основе такой процедуры, - это принцип рандомизации, случайности. Выборка называется случайной (иногда мы будем говорить простая случайная или чистая случайная выборка), если выполняется два условия. Во-первых, выборка должна быть построена таким образом, чтобы любой человек или объект в пределах совокупности имел равные возможности быть отобранным для анализа. Во-вторых, выборка должна быть сформирована так, чтобы любое сочетание из n объектов (где n - просто количество объектов, или случаев, в выборке) имело равные возможности быть отобранным для анализа.

При исследовании совокупностей, которые слишком велики, для того чтобы можно было осуществить настоящую лотерею, часто используются простые случайные выборки. Выписать имена нескольких сотен тысяч объектов, сложить их в барабан и выбрать несколько тысяч - это все же нелегкая работа. В таких случаях используется другой, однако столь же надежный способ. Каждому объекту в совокупности присваивается номер. Последовательность чисел в таких таблицах обычно задается компьютерной программой, называемой генератором случайных чисел, который, в сущности, помещает в барабан большое количество чисел, случайным образом вытаскивает их и выпечатывает в порядке получения. Иными словами, имеет место все тот же процесс, характерный для лотереи, однако компьютер, используя не имена, а числа, осуществляет универсальный выбор. Этим выбором можно пользоваться, просто присвоив каждому из наших объектов номер.

Таблица случайных чисел типа той, может использоваться несколькими разными способами, и в каждом случае необходимо принять три Решения. Во-первых, следует решить, сколько разрядов Мы будем использовать, во-вторых, необходимо разработать решающее правило для их использования; в-третьих нужно выбрать исходную точку и способ прохождения по таблице.

Как только это сделано, мы должны разработать правило, которое бы связывало числа в таблице с номерами наших объектов. Здесь существуют две возможности. Самый простой способ (хотя и не обязательно самый правильный) - использовать лишь те числа, которые попадают в число номеров, приписанных нашим объектам. Так, если мы имеем совокупность, состоящую из 250 объектов (и, таким образом, используем трехзначные числа), и решаем начать с левого верхнего угла таблицы и двигаться вниз по столбцам, мы включим в нашу выборку объекты с номерами 100, 084 и 128 и пропустим числа 375 и 990, не соответствующие нашим объектам. Этот процесс будет продолжаться до тех пор, пока не будет определено число объектов, нужных для нашей выборки.

Более трудоемкая, однако методически более правильная процедура основывается на положении, что для сохранения случайности, характерной для таблицы, должно быть использовано каждое число данной размерности (например, каждое трехзначное число). Следуя данной логике и вновь имея дело с совокупностью из 250 объектов, мы должны разбить область трехзначных чисел от 000 до 999 на 250 одинаковых промежутков. Поскольку таких чисел 1000, мы делим 1000 на 250 и находим, что каждая из частей содержит четыре числа. Таким образом, числа таблицы от 000 до 003 будут соответствовать объекту от 004 до 007 - объекту 2 и т.д. Теперь, чтобы установить, какой номер объекта соответствует числу таблицы, следует разделить трехзначное число из таблицы и округлить до ближайшего целого числа.

И наконец, мы должны выбрать в таблице исходную точку и способ прохождения. Исходной точкой может быть верхний левый угол (как в предыдущем примере), нижний правый угол, левый край второй строки или любое другое место. Этот выбор абсолютно произволен. Однако, работая с таблицей, мы должны действовать систематически. Мы могли бы взять три первых знака из каждой пятизначной последовательности, три средних знака, три последних знака или даже первый, второй и четвертый знаки. (Из первой пятизначной последовательности с помощью этих различных процедур получаются, соответственно, числа 100, 009, 097 и 109.) Мы могли бы применить эти процедуры в направлении справа налево, получив 790, 900, 001 и 791. Мы могли бы идти вдоль рядов, рассматривая поочередно каждую следующую цифру и игнорируя разбиение на пятерки (для первого ряда будут получены числа 100, 973, 253, 376 и 520). Мы могли бы иметь дело лишь с каждой третьей группой цифр (например, с 10097, 99019, 04805, 99970). Существует множество самых разнообразных возможностей, и каждая следующая ничуть не хуже предыдущей. Однако как только мы приняли решение о том, или ином способе работы, мы должны систематически следовать ему, чтобы в максимальной степени соблюдать случайность элементов в таблице.

38. Какой интервал мы называем доверительным?

Доверительный интервал - это допустимое отклонение наблюдаемых значений от истинных. Размер этого допущения определяется исследователем с учетом требований к точности информации. Если увеличивается допустимая ошибка, размер выборки уменьшается, даже если уровень доверительной вероятности останется равным 95%.

Доверительный интервал показывает, в каком диапазоне расположатся результаты выборочных наблюдений (опросов). Если мы проведем 100 одинаковых опросов в одинаковых выборках из единой генеральной совокупности (например, 100 выборок по 1000 человек в каждой в городе с населением 5 миллионов человек), то при 95%-й доверительной вероятности, 95 из 100 результатов попадут в пределы доверительного интервала (например, от 28% до 32% при истинном значении 30%).

Например, истинное количество курящих жителей города составляет 30%. Если мы 100 раз подряд выберем по 1000 человек и в этих выборках зададим вопрос "курите ли Вы?", в 95 из этих 100 выборок при 2%-м доверительном интервале значение составит от 28% до 32%.

39 Что называется уровнем доверительности (confidence level)?

Доверительный уровень отражает количество данных, необходимых оценщику для того, чтобы утверждать, что обследуемая программа имеет должный эффект. В общественных науках традиционно используется 95% доверительный уровень. Однако для большинства общественных программ уровень в 95% является излишним. Доверительный уровень в интервале 80-90% является достаточным для адекватной оценки программы. Таким образом, можно уменьшить размер репрезентативной группы, тем самым уменьшив и затраты на проведение оценки.

В процессе статистической оценки проверяется нулевая гипотеза, которая состоит в том, что программа не имела должного эффекта. Если полученные результаты значительно отличаются от изначальных предположений о правильности нулевой гипотезы, то последняя отклоняется.

40. Какой из двух доверительных интервалов больше: двусторонний 99% или двусторонний 95%? Объясните.

Двусторонний доверительный интервал 99% больше, чем 95%, так как в него попадает больше значений. Док-во:

С помощью z-значений можно точнее оценить доверительный интервал и определить общую форму доверительного интервала. Точная формулировка доверительного интервала для выборочного среднего имеет следующий вид:

Таким образом, для случайной выборки 25 наблюдений, удовлетворяющих нормальному распределению, с доверительный интервал выборочного среднего имеет следующий вид:

Таким образом, на 95% можно быть уверенным, что значение лежит в пределах ±1,568 единицы от выборочного среднего. С помощью такого же метода можно определить, что 99%-ный доверительный интервал лежит в пределах ±2,0608 единицы от выборочного среднего

значение Таким образом, имеем и отсюда , Аналогично получаем нижний предел, который равен

1. Ω = {11,12,13,14,15,16, 21, 22,..., 66},

2. Ω = {2,3,4,5,6, 7,8,9,10,11,12}

3. ● A = {16,61,34, 43, 25, 52};

● B = {11,12, 21,13,31,14, 41,15, 51,16, 61}

● C = {12, 21,36,63,45, 54,33,15, 51, 24,42,66}.

D = {СУММА ОЧКОВ РАВНА 2 ИЛИ 3 };

E = {СУММА ОЧКОВ РАВНА 10}.

Описать событие: С = {ЦЕПЬ ЗAМКНУТA} для каждого случая.

Решение. Введем обозначения: событие A - контакт 1 за­мкнут; событие В - контакт 2 замкнут; событие С - цепь замкнута, лампочка горит.

1. Для параллельного соединения цепь замкнута, когда хотя бы один из контактов замкнут, поэтому С = A + В ;

2. Для последовательного соединения цепь замкнута, ко­гда замкнуты оба контакта, поэтому С = A · В .

Задача. 1.1.4 Составлены две электрические схемы:

Событие A - цепь замкнута, событие A i - I –й кон­такт замкнут. Для какой из них справедливо соотноше­ние

A1 · (A2 + A3 · A4) · A5 = A?

Решение . Для первой схемы A = A1 · (A2 · A3 + A4 · A5), так как параллельному соединению соответствует сумма собы­тий, а последовательному соединению - произведение событий. Для второй схемы A = A 1 (A2 + A3 A4 A5). Сле­довательно, данное соотношение справедливо для второй схемы.

Задача. 1.1.5 Упростить выражение (A + B)(B + C)(C+ A).

Решение. Воспользуемся свойствами операций сложения и умножения событий.

(A + B)(B + C)(A + C) =

(AB + AC + B B + BC)(A + C) =

= (AB + AC + B + BC)(A + C) =

(AB + AC + B)(A + C) = (B + AC)(A + C) =

= BA + BC + ACA + ACC = B A + BC + AC.

Задача. 1.1.6 Доказать, что события A, AB и A+B Обра­зуют полную группу.

Решение. При решении задачи воспользуемся свойства­ми операций над событиями. В начале покажем, что эти события попарно несовместны.

A теперь покажем, что сумма этих событий дает простран­ство элементарных событий.

Задача. 1.1.7 С помощью схемы Эйлера–Венна проверить правило де-Моргана:

А) Заштриховано событие AB.

Б) Событие A - вертикальная штриховка; событие B - горизонтальная штриховка. Событие

{A+B} - заштрихованная область.

Из сопоставления рисунков а) и в) следует:

Задача. 1.2.1 Сколькими способами можно рассадить 8 человек:

1. В один ряд?

2. За круглым столом?

Решение.

1. Искомое число способов равно числу перестановок из 8, т. е.

P8 = 8! = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 = 40320

2. Так как за круглым столом выбор первого человека не влияет на чередование элементов, то первым можно взять любого, а оставшихся упорядочим относительно выбранного. Это действие можно осуществить 8!/8 = 5040 способами.

Задача. 1.2.2 На курсе изучается 5 предметов. Скольки­ми способами можно составить расписание на субботу, ес­ли в этот день должны быть две различные пары?

Решение. Искомое число способов есть число размещений

Из 5 по 2, так как нужно учесть порядок пар:

Задача. 1.2.3 Сколько экзаменационных комиссий, состо­ящих из 7 человек, можно составить из 15 преподавате­лей?

Решение. Искомое число комиссий (без учета порядка) - это число сочетаний из 15 по 7:

Задача. 1.2.4 Из корзины, содержащей двадцать прону­мерованных шаров выбирают на удачу 5 шаров. Опреде­лить число элементов пространства элементарных собы­тий этого опыта, если:

Шары выбираются последовательно один за другим с возвращением после каждого извлечения;

Шары выбирают один за другим, не возвращая;

Выбирают сразу 5 шаров.

Решение.

Число способов извлечь первый шар из корзины равно 20. Так как извлеченный шар вернулся в корзину, то число способов извлечь второй шар также равно 20 и т. д. Тогда число способов извлечь 5 шаров в этом слу­чае равно 20 · 20 · 20 · 20 · 20 = 3200000.

Число способов извлечь первый шар из корзины рав­но 20. Так как извлеченный шар после извлечения не вернулся в корзину, то число способов извлечь второй шар стало равно 19 и т. д. Тогда число способов извлечь 5 шаров без возвращения равно 20 · 19 · 18 · 17 · 16 = A52 0

Число способов извлечь из корзины 5 шаров сразу рав­но числу сочетаний из 20 по 5:

Задача. 1.2.5 Подброшены две игральные кости. Найти вероятность события A того, что выпадет хотя бы одна единица.

Решение. На каждой кости может выпасть любое число очков от 1 до 6. Поэтому пространство элементарных со­бытий содержит 36 равновозможных исходов. Событию A благоприятствуют 11 исходов: (1,1), (1,2), (2,1), (1,3), (3,1), (1,4), (4,1), (1,5), (5,1), (1,6), (6,1), поэтому

Задача. 1.2.6 На красных карточках написаны буквы у, и, я, к, ц, ф, н, на синих - буквы а, а, о, т, т, с, ч. После тща­тельного перемешивания, что вероятнее: с первого раза из букв на красных карточках составить слово «функция» или из букв на синих карточках слово «частота»?

Решение. Пусть событие A - наудачу составленное из 7 букв слово «функция», событие B - наудачу составлен­ное из 7 букв слово «частота». Так как упорядочиваются два множества из 7 букв, то число всех исходов для со­бытий A и B равно n = 7!. Событию A благоприятствует один исход m = 1, так как все буквы на красных карточ­ках различны. Событию B благоприятствуют m = 2! · 2! ис­ходов, так как буквы «а» и «т» встречаются дважды. Тогда P(A) = 1/7! , P(B) = 2! 2! /7! , P(B) > P(A).

Задача. 1.2.7 На экзамене студенту предлагается 30 би­летов; в каждом билете два вопроса. Из 60 вопросов, вошед­ших в билеты, студент знает только 40. Найти вероят­ность того, что взятый студентом билет будет состо­ять

1. из известных ему вопросов;

2. из неизвестных ему вопросов;

3. из одного известного и одного неизвестного вопроса.

Решение. Пусть A - событие, состоящее в том, что на оба вопроса студент знает ответ; B - не знает ответа на оба вопроса; C - на один вопрос знает ответ, на другой - не знает. Выбор двух вопросов из 60 можно осуществить n = C260 = 60 2·59 = 1770 способами.

1. Имеется m = C240 = 40 2·39 = 780 возможностей выбора известных студенту вопросов. Тогда P(A) = M N = 17 78 70 0 = 0,44

2. Выбор двух неизвестных вопросов из 20 можно осуществить m = C220 = 20 2·19 = 190 способами. В таком случае

P(B) = M N = 11 79 70 0 = 0,11

3. Существует m = C14 0 ·C21 0 = 40·20 = 800 способов выбрать билет с одним известным и одним неизвестным вопроcом. Тогда P(C) = 18 70 70 0 = 0,45.

Задача. 1.2.8 По трем каналам послана некоторая ин­формация. Каналы работают независимо друг от друга. Найти вероятность того, что информация достигнет це­ли

1. Только по одному каналу;

2. Хотя бы по одному каналу.

Решение. Пусть A - событие, состоящее в том, что инфор­мация достигает цели только по одному каналу; B - хотя бы по одному каналу. Опыт - передача информации по трем каналам. Исход опыта - информация достигла цели. Обозначим Ai - информация достигает цели по i-му каналу. Пространство элементарных событий имеет вид:

Событию B благоприятствуют 7 исходов: все исходы, кро­меТогда n = 8; mA = 3; mB = 7; P(A) = 3 8 ; P(B) = 7 8.

Задача. 1.2.9 На отрезке единичной длины случайным об­разом появляется точка. Найти вероятность того, что расстояние от точки до концов отрезка больше 1/8.

Решение. По условию задачи искомому событию удовле­творяют все точки, появляющиеся на интервале (a; b).

Так как его длина s = 1 - 1 8 + 1 8 = 3 4, а длина всего отрезка S = 1, то искомая ве­роятность равна P = s/S = 3/14 = 0.75.

Задача. 1.2.10 В партии из N изделий K изделий являются бракованными. Для контроля выбирается m изделий. Най­ти вероятность того, что из M Изделий L Окажутся брако­ванными (событие А).

Решение. Выбор m изделий из n можно осуществить способами, а выбор L бракованных из k бракованных - способами. После выбора L бракованных изделий останется (m - L ) годных, находящихся среди (n - k) изделий. Тогда число исходов, благоприятствующих событию A, равно·

И искомая вероятность

Задача. 1.3.1 B урне 30 шаров: 15 красных, 10 синих и 5 белых. Найти вероятность того, что наугад вынутый шар - цветной.

Решение. Пусть событие A - вынут красный шар, собы­тие B - вынут синий шар. Тогда события (A + B) - вынут цветной шар. Имеем P(A) = 1 3 5 0 = 1 2 , P(B) = 1 3 0 0 = 1 3. Так как

События A и B несовместны, то P(A + B) = P(A) + P(B) = 1 2 + 1 3 = 5 6 = 0.83.

Задача. 1.3.2 Вероятность того, что будет снег (событие A), равна 0.6, А того, что будет дождь (событие B), равна 0.45. Найти вероятность плохой погоды, если вероятность дождя со снегом (событие AB) равна 0.25.

Решение. События A и B совместны, поэтому P(A + B) = P(A) + P(B) - P(AB) = 0.6 + 0.45 - 0.25 = 0.8

Задача. 1.3.3 B первом ящике 2 белых и 10 черных шаров, во втором - 3 белых и 9 черных шаров, в третьем - 6 бе­лых и 6 черных шаров. Из каждого ящика вынули по шару. Найти вероятность того, что все вынутые шары белые.

Решение. Событие A - вынут белый шар из первого ящи­ка, B - из второго ящика, C – из третьего. Тогда P(A) = 12 2 = 1 6; P(B) = 13 2 = 1 4; P(C) = 16 2 = 1 2. Событие ABC - все вынутые

Шары - белые. События A, B,C - независимые, поэтому

P(ABC) = P(A)·P (B)·P (C) = 1 6 · 1 4 · 1 2 = 41 8 = 0.02

Задача. 1.3.4 B электрическую цепь последовательно включены 5 Элементов, работающие независимо друг от друга. Вероятность отказов первого, второго, третье­го, четвертого, пятого элементов соответственно равны 0.1; 0.2; 0.3; 0.2; 0.1. Найти вероятность того, что тока в цепи не будет (событие A).

Решение. Так как элементы включены последовательно, то тока в цепи не будет, если откажет хотя бы один эле­мент. Событие Ai(i =1...5) - откажет I - й элемент. События

Задача. 1.3.5 Цепь состоит из независимых блоков, соеди­ненных в систему с одним входом и одним выходом.

Выход из строя за время Т различных элементов цепи - независимые события, имеющие следующие вероятно­сти P 1 = 0.1; P2 = 0.2; P3 = 0.3; P4 = 0.4. Отказ любого из элементов приводит к прерыванию сигнала в той ветви цепи, где находится данный элемент. Найти надежность системы.

Решение. Если событие A - {СИСТЕМА НАДЕЖНА}, Ai - {i - й БЛОК РАБОТАЕТ БЕЗОТКАЗНО}, то A = (A1 + A2)(A3 + A4). События A1+A2, A3+A4 - независимые, события A1 и A2, A3 и A4 - совместные. По формулам умножения и сложения вероятностей

Задача. 1.3.6 Рабочий обслуживает 3 станка. Вероят­ность того, что в течение часа станок не потребует вни­мания рабочего, равна для первого станка 0.9, для второго станка - 0.8, для третьего станка - 0.7.

Найти вероятность того, что в течение некоторого часа

1. Потребует внимания второй станок;

2. Потребуют внимания два станка;

3. Потребуют внимания не менее двух станков.

Решение. Пусть Ai - i-й станок потребует внимания ра­бочего,- i-й станок не потребует внимания рабочего. Тогда

Пространство элементарных событий:

1. Событие A - потребует внимания второй станок: Тогда

Так как события несовместные и независимые. P(A) = 0.9·0.8·0.7 + 0.1·0.8·0.7 + 0.9·0.8·0.3 + 0.1·0.8·0.3 = 0.8

2. Событие B - потребуют внимания два станка:

3. Событие C - потребуют внимания не менее двух стан­
ков:

Задача. 1.3.7 B машину «Экзаменатор» введено 50 Вопро­сов. Студенту предлагается 5 Вопросов и ставится оценка «отлично», если на все вопросы получен верный ответ. Най­ти вероятность получить “отлично”, если студент подго­товил только 40 Вопросов.

Решение. A - {ПОЛУЧЕНА ОЦЕНКА «ОТЛИЧНО»}, Ai - {ОТВЕТИЛ НА i - й ВОПРОС}. Тогда A = A1A2A3A4A5, имеем:

Или, другим способом - c помощью формулы классической вероятности:И

Задача. 1.3.8 Вероятности того, что нужная сборщику деталь находится в I , II , III , IV ящике, соответственно рав­ны 0.6; 0.7; 0.8; 0.9. Найти вероятность того, что сборщику придется проверить все 4 ящика (событие A ).

Решение. Пусть Ai - {Нужная сборщику деталь находит­ся в i-м ящике.} Тогда

Так как события несовместны и независимы, то

Задача. 1.4.1 Обследовалась группа из 10000 человек в возрасте свыше 60 лет. Оказалось, что 4000 человек яв­ляются постоянно курящими. У 1800 курящих обнаружи­лись серьезные изменения в легких. Среди некурящих изме­нения в легких имели 1500 человек. Какова вероятность того, что наугад обследованный человек, имеющий изме­нения в легких, является курящим?

Решение. Введем гипотезы: H1 - обследованный является постоянно курящим, H2 - является некурящим. Тогда по условию задачи

P(H1)= ------- =0,4, P(H2)=--------- =0,6

Обозначим через A событие, состоящее в том, что об­следованный имеет изменения в легких. Тогда по условию задачи

По формуле (1.15) находим

Искомая вероятность того, что обследованный человек является курящим, по формуле Байеса равна

Задача. 1.4.2 В продажу поступают телевизоры трех за­водов: 30% с первого завода, 20% - со второго, 50% - с третьего. Продукция первого завода содержит 20% теле­визоров со скрытым дефектом, второго - 10% , третьего - 5%. Какова вероятность приобрести исправный телеви­зор?

Решение. Рассмотрим события: A - приобретен исправ­ный телевизор; гипотезы H1, H2, H3 - телевизор поступил в продажу соответственно с первого, второго, третьего заво­да. По условию задачи

По формуле (1.15) находим

Задача. 1.4.3 Имеются три одинаковых по виду ящика. В первом 20 белых шаров, во втором - 10 белых и 10 черных шаров, в третьем - 20 черных шаров. Из наугад выбран­ного ящика вынут белый шар. Найти вероятность того, что этот шар из второго ящика.

Решение. Пусть событие A - вынут белый шар, гипотезы H1, H2, H3 - шар вынут соответственно из первого, второго, третьего ящика. Из условия задачи находим

Тогда
По формуле (1.15) находим

По формуле (1.16) находим

Задача. 1.4.4 Телеграфное сообщение состоит из сигна­лов «точка» и «тире». Статистические свойства помех та­ковы, что искажаются в среднем 2/5 Сообщений «точка» и 1/3 Сообщений «тире». Известно, что среди передавае­мых сигналов «точка» и «тире» встречаются в соотноше­нии 5: 3. Определить вероятность того, что принят пе­редаваемый сигнал, если:

А) принят сигнал «точка»;

Б) принят сигнал «тире».

Решение. Пусть событие A - принят сигнал «точка», а со­бытие B - принят сигнал «тире».

Можно сделать две гипотезы: H1 - передан сигнал «точ­ка», H2 - передан сигнал «тире». По условию P(H1) : P(H2) =5: 3. Кроме того, P(H1) + P(H2) = 1. Поэтому P(H1) = 5/8, P(H 2 ) = 3/8. Известно, что

Вероятности событий A И B Находим по формуле пол­ной вероятности:

Искомые вероятности будут:

Задача. 1.4.5 Из 10 каналов радиосвязи 6 каналов защи­щены от воздействия помех. Вероятность того, что за­щищенный канал в течении времени T не выйдет из строя, равна 0.95, для незащищенного канала - 0.8. Найти ве­роятность того, что случайно выбранные два канала не выйдут из строя в течение времени T , причем оба канала не защищены от воздействия помех.

Решение. Пусть событие A - оба канала не выйдут из строя в течение времени t, событие A1 - Выбран защищен­ный канал, A2 - Выбран незащищенный канал.

Запишем пространство элементарных событий для опыта - {выбрано два канала}:

Ω = {A1A1, A1A2, A2A1, A2A2}

Гипотезы:

H1 - оба канала защищены от воздействия помех;

H2 - первый выбранный канал защищен, второй вы­бранный канал не защищен от воздействия помех;

H3 - первый выбранный канал не защищен, второй выбранный канал защищен от воздействия помех;

H4 - оба выбранных канала не защищены от помех. Тогда

И

Задача. 1.5.1 По каналу связи передается 6 Сообщений. Каждое из сообщений может быть искажено помехами с вероятностью 0.2 Независимо от других. Найти вероят­ность того, что

1. 4 сообщения из 6 не искажены;

2. Не менее 3 из 6 переданы искаженными;

3. Хотя бы одно сообщение из 6 искажено;

4. Не более 2 из 6 не искажены;

5. Все сообщения переданы без искажения.

Решение. Так как вероятность искажения 0.2, то вероят­ность передачи сообщения без помех - 0.8.

1. Используя формулу Бернулли (1.17), найдем вероят­
ность передачи 4 сообщений из 6 без помех:

2. не менее 3 из 6 переданы искаженными:

3. хотя бы одно сообщение из 6 искажено:

4. хотя бы одно сообщение из 6 искажено:

5. все сообщения переданы без искажения:

Задача. 1.5.2 Вероятность того, того, что летом день будет ясным, равна 0.42; вероятность пасмурного дня рав­на 0.36 и переменной облачности - 0.22. Сколько дней из 59 можно ожидать ясных и пасмурных?

Решение. Из условия задачи видно, что надо искать наи­более вероятное число ясных и пасмурных дней.

Для ясных дней P = 0.42, N = 59. Составляем неравен­ства (1.20):

59 0.42 + 0.42 - 1 < m0 < 59 0.42 + 0.42.

24.2 ≤ Mo ≤ 25.2 → Mo = 25.

Для пасмурных дней P = 0.36, N = 59 и

0.36 59 + 0.36 - 1 ≤ M 0 ≤ 0.36 59 + 0.36;

Следовательно 20.16 ≤ M 0 ≤ 21.60; → M 0 = 21.

Таким образом, наиболее вероятное число ясных дней Mo =25, пасмурных дней - M0 = 21. Тогда летом можно ожи­дать Mo + M0 =46 ясных и пасмурных дней.

Задача. 1.5.3 На лекции по теории вероятностей при­сутствует 110 студентов курса. Найти вероятность того что

1. k студентов (k = 0,1,2) из присутствующих родились первого сентября;

2. хотя бы один студент курса родился первого сентя­бря.

P =1/365 очень мала, поэтому используем фор­мулу Пуассона (1.22). Найдем параметр Пуассона. Так как

N = 110, то λ = np = 110 1 /365 = 0.3.

Тогда по формуле Пуассона

Задача. 1.5.4 Вероятность того, что деталь не стан­дартная, равна 0.1. Сколько деталей нужно отобрать, чтобы с вероятностью P = 0.964228 Можно было утвер­ждать, что относительная частота появления нестан­дартных деталей отклоняется от постоянной вероятно­сти p = 0.1 По абсолютной величине не более, чем на 0.01 ?

Решение.

Требуемое число N Найдем по формуле (1.25). Имеем:

P = 1.1; q = 0.9; P = 0.96428. Подставим данные в формулу:

Откуда находим

По таблице значений функции Φ(X ) находим, что

Задача. 1.5.5 Вероятность выхода из строя за время Т одного конденсатора равна 0.2. Определить вероятность того, что за время Т из 100 конденсаторов выйдут из строя

1. Ровно 10 конденсаторов;

2. Не менее 20 конденсаторов;

3. Менее 28 конденсаторов;

4. От 14 до 26 конденсаторов.

Решение. Имеем П = 100, P = 0.2, Q = 1 - P = 0.8.

1. Ровно 10 конденсаторов.

Так как П Велико, воспользуемся локальной теоремой Муавра - Лапласа:

Вычислим

Так как функция φ(х) - четная, то φ(-2,5) = φ(2,50) = 0,0175 (находим по таблице значений функции φ(х). Искомая вероятность

2. Не менее 20 конденсаторов;

Требование, чтобы из 100 конденсаторов из строя вы­шли не менее 20, означает, что из строя выйдут либо 20, либо 21, ..., либо 100. Таким образом, Т1 = 20, Т 2 =100. Тогда

По таблице значений функции Φ(x) Найдем Φ(x1) = Φ(0) = 0, Φ(x2) = Φ(20) = 0.5. Искомая вероятность:

3. Менее 28 конденсаторов;

(здесь было учтено, что функция Лапласа Ф(x) - нечет­ная).

4. От 14 до 26 конденсаторов. По условию M1= 14, m2 = 26.
Вычислим x 1,x2:

Задача. 1.5.6 Вероятность появления некоторого собы­тия в одном опыте равна 0.6. Какова вероятность, что это событие появиться в большинстве из 60 опытов?

Решение. Количество M Появлений события в серии ис­пытаний находится в промежутке . «В большинстве опытов» означает, что M Принадлежит промежутку По условию N = 60, P = 0.6, Q = 0.4, M 1 = 30, m2 = 60. Вычислим x1 и x2:

Случайные величины и их распределения

Задача. 2.1.1 Дана таблица, где в верхней строке указа­ны возможные значения случайной величины X, а в нижней - их вероятности.

Может ли эта таблица быть рядом распределения X?

Ответ: Да, так как p1 + p2 + p3 + p4 + p5 = 1

Задача. 2.1.2 Выпущено 500 Лотерейных билетов, причем 40 Билетов принесут их владельцам выигрыш по 10000 Руб., 20 Билетов - по 50000 Руб., 10 Билетов - по 100000 Руб., 5 Билетов - по 200000 Руб., 1 Билет - 500000 Руб., осталь­ные - без выигрыша. Найти закон распределения выигры­ша для владельца одного билета.

Решение.

Возможные значения X: x5 = 10000, x4 = 50000, x3 = 100000, x2 = 200000, x1 = 500000, x6 = 0. Вероятности этих возможных значений:

Искомый закон распределения:

Задача. 2.1.3 Стрелок, имея 5 Патронов, стреляет до первого попадания в цель. Вероятность попадания при каждом выстреле равна 0.7. Построить закон распределе­ния числа использованных патронов, найти функцию рас­пределения F (X ) и построить ее график, найти P(2 < x < 5).

Решение.

Пространство элементарных событий опыта

Ω = {1, 01, 001, 0001, 00001, 11111},

Где событие {1} - попал в цель, событие {0} - не попал в цель. Элементарным исходам соответствуют следующие значения случайной величины числа использованных па­тронов: 1, 2, 3, 4, 5. Так как результат каждого следующего выстрела не зависит от предыдущего, то вероятности воз­можных значений:

P1 = P(x1 = 1) = P(1) = 0.7; P2 = P(x2 = 2) = P(01) = 0.3 · 0.7 = 0.21;

P3 = P(x3 = 3) = P(001) = 0.32 · 0.7 = 0.063;

P4 = P(x4 = 4) = P(0001) = 0.33 · 0.7 = 0.0189;

P5 = P(x5 = 5) = P(00001 + 00000) = 0.34 · 0.7 + 0.35 = 0.0081.

Искомый закон распределения:

Найдем функцию распределения F (X ), Пользуясь формулой (2.5)

X ≤1, F(x) = P(X < x) = 0

1 < x ≤2, F(x) = P(X < x) = P1 (X1 = 1) = 0.7

2 < x ≤ 3, F(x) = P1 (X = 1) + P2(x = 2) = 0.91

3 < x ≤ 4, F(x) = P1 (x = 1) + P2(x = 2) + P3(x = 3) =

= 0.7 + 0.21 + 0.063 = 0.973

4 < x ≤ 5, F(x) = P1(x = 1) + P2(x = 2) + P3(x = 3) +

+ P4(x = 4) = 0.973 + 0.0189 = 0.9919

X > 5, F (x) = 1

Найдем P(2 < x < 5). Применим формулу (2.4): P(2 < X < 5) = F(5) - F (2) = 0.9919 - 0.91 = 0.0819

Задача. 2.1.4 Дана F (X ) некоторой случайной величины:

Записать ряд распределения дляX.

Решение.

Из свойств F (X ) Следует, что возможные значения слу­чайной величины X - Точки разрыва функции F (X ), А со­ответствующие им вероятности - скачки функции F (X ). Находим возможные значения случайной величины X={0,1,2,3,4}.

Задача. 2.1.5 Установить, какая из функций

Является функцией распределения некоторой случайной величины.

В случае утвердительного ответа, найти вероят­ность того, что соответствующая случайная величина принимает значения на [-3,2].

Решение. Построим графики функций F1(x) и F2(x):

Функция F2(x) не является функцией распределения, так как не является неубывающей. Функция F1(x) является

Функцией распределения некоторой случайной величины, так как является неубывающей и удовлетворяет условию (2.3). Найдем вероятность попадания на промежуток:

Задача. 2.1.6 Дана плотность вероятности непрерывной случайной величины X:

Найти:

1. Коэффициент C;

2. Функцию распределения F(x);

3. Вероятность попадания случайной величины в интер­вал (1, 3).

Решение. Из условия нормировки (2.9)находим

Следовательно,

По формуле (2.10) находим:

Таким образом,

По формуле (2.4) находим

Задача. 2.1.7 Случайное время простоя радиоэлектрон­ной аппаратуры в ряде случаев имеет плотность вероят­ности

Где M = lge = 0.4343...

Найти функцию распределения F(x).

Решение. По формуле (2.10) находим

Где

Задача. 2.2.1 Дан ряд распределения дискретной случай­ной величины X:

Найти математическое ожидание, дисперсию, сред­нее квадратичное отклонение, M, D[-3X + 2].

Решение.

По формуле (2.12) находим математическое ожидание:

M[X] = x1p1 + x2p2 + x3p3 + x4p4 = 10 · 0.2 + 20 · 0.15 + 30 · 0.25 + 40 · 0.4 = 28.5

M = 2M[X] + M = 2M[X] + 5 = 2 · 28.5 + 5 = 62. По формуле (2.19) найдем дисперсию:

Задача. 2.2.2 Найти математическое ожидание, диспер­сию и среднее квадратичное отклонение непрерывной слу­чайной величины X, функция распределения которой

.

Решение. Найдем плотность вероятности:

Математическое ожидание найдем по формуле (2.13):

Дисперсию найдем по формуле (2.19):

Найдем сначала математическое ожидание квадрата случайной величины:

Среднее квадратичное отклонение

Задача. 2.2.3 X имеет ряд распределения:

Найти математическое ожидание и дисперсию случайной величины Y = EX.

Решение. M [ Y ] = M[ EX] = e -- 1 · 0.2 + e0 · 0.3 + e1 · 0.4 + e2 · 0.1 =

0.2 · 0.3679 + 1 · 0.3 + 2.71828 · 0.4 + 7.389 · 0.1 = 2.2.

D[Y] = D = M[(eX)2 - M2 [E X] =

[(e-1)2 0.2 + (e0)2 0.3 + (e1)2 0.4 + (e2)2 0.1] - (2.2)2 =

= (e--2 0.2 + 0.3 + e2 0.4 + e4 0.1) - 4.84 = 8.741 - 4.84 = 3.9.

Задача. 2.2.4 Дискретная случайная величина X Может принимать только два значения X1 И X2, причем X1 < x2. Известны вероятность P1 = 0.2 Возможного значения X1, математическое ожидание M[X] = 3.8 И дисперсия D[X] = 0.16. Найти закон распределения случайной величины.

Решение. Так как случайная величина X принимает толь­ко два значения x1 и x2, то вероятность p2 = P(X = x2) = 1 - p1 = 1 - 0.2 = 0.8.

По условию задачи имеем:

M[X] = x1p1 + x2p2 = 0.2x1 + 0.8x2 = 3.8;

D[X] = (x21p1 + x22p2) - M2[X] = (0.2x21 + 0.8x22) - (0.38)2 = 0.16.

Таким образом получили систему уравнений:

Условию x1

Задача. 2.2.5 Случайная величина X подчинена закону распределения, график плотности которого имеет вид:

Найти математическое ожидание, дисперсию и сред­нее квадратичное отклонение.

Решение. Найдем дифференциальную функцию распре­деления f(x). Вне интервала (0, 3) f(x) = 0. На интервале (0, 3) график плотности есть прямая с угловым коэффици­ентом k = 2/9, проходящая через начало координат. Таким образом,

Математическое ожидание:

Найдем дисперсию и среднее квадратичное отклоне­ние:

Задача. 2.2.6 Найти математическое ожидание и дис­персию суммы очков, выпадающих на четырех игральных кубиках при одном бросании.

Решение. Обозначим A - число очков на одном кубике при одном бросании, B – число очков на втором кубике, C - на третьем кубике, D - на четвертом кубике. Для случайных ве­личин A, B, C, D за­кон распределения один.

Тогда M[A] = M[B] = M[C] = M[D] = (1+2+3+4+5+6) / 6 = 3.5

Задача. 2.3.1 Вероятность того, что частица, вылетев­шая из радиоактивного источника, будет зарегистриро­вана счетчиком, равна 0.0001. За время наблюдения из ис­точника вылетело 30000 Частиц. Найти вероятность то­го, что счетчик зарегистрировал:

1. Ровно 3 частицы;

2. Ни одной частицы;

3. Не менее 10 частиц.

Решение. По условию П = 30000, P = 0.0001. События, со­стоящие в том, что частицы, вылетевшие из радиоактив­ного источника, зарегистрированы, независимы; число П Велико, а вероятность P Мала, поэтому воспользуемся рас­пределением Пуассона:Найдем λ: λ = п P = 30000 0.0001 = 3 = М[Х]. Искомые вероятности:

Задача. 2.3.2 В партии 5% нестандартных деталей. На­удачу отобраны 5 деталей. Написать закон распределе­ния дискретной случайной величины X - числа нестан­дартных деталей среди пяти отобранных; найти мате­матическое ожидание и дисперсию.

Решение. Дискретная случайная величина X - число нестандартных деталей - имеет биномиальное распреде­ление и может принимать следующие значения: x1 = 0, x2 = 1, x3 = 2, x4 = 3, x5 = 4, x6 = 5. Вероятность нестандарт­ной детали в партии p = 5/100 = 0.05. Найдем вероятности этих возможных значений:

Напишем искомый закон распределения:

Найдем числовые характеристики:

0 0.7737809 + 1 0.2036267 + 2 0.0214343+

3 0.0011281 + 4 0.0000297 + 5 0.0000003 = 0.2499999 ≈ 0.250

M[X] = N p = 5 0.05 = 0.25.

D[X] = M M 2 [X] = 02 0.7737809 + 12 0.2036267+

22 0.0214343 + 32 0.0011281 + 42 0.0000297 + 52 0.0000003- 0.0625 =

0.2999995 - 0.0625 = 0.2374995 ≈ 0.2375

Или D [ X ] = n p (1 - P) = 5 0.05 0.95 = 0.2375.

Задача. 2.3.3 Время обнаружения цели радиолокатором распределено по показательному закону

Где 1/ λ = 10 Сек. - среднее время обнаружения цели. Найти вероятность того, что цель будет обнаружена за время от 5 До 15 Сек. после начала поиска.

Решение. Вероятность попадания случайной величины X В интервал (5, 15) Найдем по формуле (2.8):

ПриПолучаем

0.6065(1 - 0.3679) = 0.6065 0.6321 = 0.3834

Задача. 2.3.4 Случайные ошибки измерения подчинены нормальному закону с параметрами a = 0, σ = 20 Мм . За­писать дифференциальную функцию распределения F (X ) и найти вероятность того, что при измерении допущена ошибка в интервале от 5 До 10 Мм .

Решение. Подставим значения параметров a и σ в диффе­ренциальную функцию распределения (2.35):

По формуле (2.42) найдем вероятность попадания слу­чайной величины X В интервале , т. е. A = 0, B = 0.1. То­гда дифференциальная функция распределения F(x) Будет иметь вид