Что относится к гидрофобным веществам. Что такое гидрофобные вещества? Гидрофобный эффект с точки зрения статистической физики

165 градусов угол контакта с водой на поверхности модифицированной с помощью плазменной технологии Система поверхностной химии. Угол контакта красный угол плюс 90 градусов.

Капли воды на гидрофобной поверхности травы

Термин гидрофобные происходит от древнегреческого ὑδρόφοβος, «имея ужас воды», построенный из ὕδωρ, «воды», и φόβος, «страха».

Химический фон

Гидрофобное взаимодействие является главным образом энтропийным эффектом, происходящим из разрушения высоко динамических водородных связей между молекулами воды с помощью жидкой неполярного растворенного вещества, образующего клатрат -подобной структуры вокруг неполярных молекул. Эта структура формируется более высоко упорядоченная, чем свободные молекулы воды из - за молекулы воды расположения себя, чтобы взаимодействовать как можно больше с собой, и, таким образом, приводит к более высокому энтропийному состоянию, которое вызывает неполярные молекулы группироваться вместе, чтобы уменьшить площадь поверхности, обнаженную к воде и уменьшение энтропии системы. Таким образом, 2 несмешивающихся фазы (гидрофильные по сравнению с гидрофобным) будут изменяться таким образом, что их соответствующая площадь поверхности раздела будет минимальной. Этот эффект может быть визуализированы в явление называется фазовым разделением.

Superhydrophobicity

Капля воды на завод листьев лотоса.

Супергидрофобных поверхности, такие как листья растения лотоса, являются те, которые являются чрезвычайно трудно смачивать. В углах смачивания капли воды превышает 150 °. Это упоминается как эффект лотоса , и это прежде всего физическое свойство связано с межфазного натяжения , а не химического свойства.

теория

В 1805 году Томас Юнг определил угол контакта & thetas путем анализа сил, действующих на жидкости покоя капли на твердой поверхности, окруженной газом.

ВЕНЗЕЛЬ установлено, что, когда жидкость находится в непосредственном контакте с поверхностью микроструктурной, θ изменится на θ W *

соз ⁡ θ W * знак равно р соз ⁡ θ {\ Displaystyle \ соз {\ тета} _ {W} * = г \ соз {\ тета} \,}

где R представляет собой отношение фактической площади к площади проекции. Уравнение Венцеля показывает, что микроструктурировани поверхности усиливает естественную тенденцию поверхности. Гидрофобная поверхность (тот, который имеет оригинальный контактный угол больше 90 °) становится более гидрофобным, когда микроструктурированный - ее новый угол контакта становится больше, чем оригинал. Тем не менее, гидрофильная поверхность (тот, который имеет оригинальный угол контакта меньше чем 90 °) становится более гидрофильным, когда микроструктурированный - ее новый угол контакта станет меньше, чем оригинал. Касси и Бакстер обнаружил, что если жидкость подвешен на вершинах микроструктур, θ изменится на & thetas CB * :

соз ⁡ θ CB * знак равно φ (соз ⁡ θ + 1) - 1 {\ Displaystyle \ соз {\ тета} _ {\ текст {CB}} * = \ varphi (\ соз \ тета + 1) -1 \,}

где φ является доля площади твердого вещества, которая соприкасается с жидкостью. Жидкость в состоянии Касси-Бакстера более подвижна, чем в состоянии Wenzel.

Мы можем предсказать, должно ли государство Венцель или Касси-Бакстера существуют путем вычисления нового угла контакта с обоих уравнений. При минимизации свободной энергии аргумента, отношение предсказанного меньший новый угол контакта является государство, скорее всего, существует. Изложенные в математических терминах, для государства Касси-Бакстера существовать, выполняется неравенство должно быть правдой.

соз ⁡ θ > φ - 1 р - φ {\ Displaystyle \ \ соз тета> {\ гидроразрыва {\ varphi -1} {r- \ varphi}}}

Недавний альтернативный критерий для государства Касси-Бакстера утверждает, что состояние Касси-Бакстера существует, если выполняются следующие 2 условия: 1) линии соприкосновения сил преодолеть тела силы неподдерживаемый веса капли и 2) Микроструктура достаточно высоки, чтобы предотвратить жидкость что мосты микроструктур от прикосновения к базе микроструктур.

Новый критерий для переключения между Венцеля и Касси-Бакстера государств была разработана недавно на основе шероховатости поверхности и поверхностной энергии. Критерием фокусируется на способности воздуха для улавливания при жидких капель на неровных поверхностях, которые могли бы сказать, следует ли использовать модель Венцель или модель Касси-Бакстера для определенной комбинации шероховатости поверхности и энергии.

Краевой углом является мерой статической гидрофобности, и угол контакта гистерезис и угол скольжения динамических мер. Краевой угол гистерезис представляет собой явление, которое характеризует поверхностную неоднородность. Когда пипетку впрыскивает жидкость на твердое вещество, жидкость будет образовывать некоторый угол контакта. По мере того как пипетка впрыскивает больше жидкости, капля будет увеличиваться в объеме, угол контакта будет возрастать, но его трехфазная граница будет оставаться неподвижной, пока он внезапно не продвигается наружу. Угол контакта капельки была непосредственно перед опережением наружу, называется наступающим контактный углом. Отступая угол контакта теперь измеряется путем откачки жидкости обратно из капли. Капелька будет уменьшаться в объеме, угол контакта будет уменьшаться, но его трехфазная граница будет оставаться неподвижной, пока он вдруг не отступает внутрь. Угол контакта капельки была непосредственно перед отступая внутрь называется удаляющимся углом контакта. Разница между продвижением и при отступлении углов контакта называется углом контакта гистерезис и может быть использована для характеристики поверхностной неоднородности, шероховатости и подвижности. Поверхности, которые не являются однородными будут иметь домены, которые препятствуют движению линии соприкосновения. Угла скольжения является еще одной мерой динамической гидрофобности и измеряется путем осаждения капли на поверхность и наклона поверхности до тех пор, пока капля начинает скользить. В общем случае, жидкости в состоянии Касси-Бакстера демонстрируют более низкие углы скольжения и контактный угол гистерезис, чем те, в состоянии Wenzel.

Исследование и разработка

Dettre и Джонсон обнаружили в 1964 году, что супергидрофобный эффект лотоса явление было связанно с грубыми гидрофобными поверхностями, и они разработали теоретическую модель, основанную на эксперименты со стеклянными шариками, покрытого парафином или ТФЭ теломером. Самоочистки свойства супергидрофобных микро- наноструктурированных поверхностей сообщались, в 1977 г. Perfluoroalkyl, перфторполиэфире и РФ плазмы -formed были разработаны сверхгидрофобные материалы, используемые для электросмачивания и коммерциализации для биомедицинских применений между 1986 и 1995 Другими технологиями и приложениями имеют появились с середины 1990 - х годов. Прочное супергидрофобными иерархическую композицию, наносить в один или два этапа, был раскрыт в 2002 году, содержащий частицы нано-размера ≤ 100 нм, наложенной на поверхность, имеющую микронного размера признаки или частицы ≤ 100 мкм. Более крупные частицы наблюдали, чтобы защитить мелкие частицы от механического износа.

В недавнем исследовании, superhydrophobicity сообщалось, позволяя алкилкетенов димер (АКД) затвердевать в наноструктурированных фрактальной поверхности. Много работ, так как представлены способы изготовления для изготовления супергидрофобные поверхностей, включая осаждение частиц, методов золь-гель, плазменной обработки, осаждения из паровой фазы, а также технологии литья. Текущие возможности для исследований влияния заключается, главным образом, в фундаментальных исследованиях и практическом производстве. Дебаты в последнее время появились относительно применимости моделей Венцеля и Касси-Бакстера. В эксперименте, предназначенном для оспаривания поверхностной энергии перспективы модели Венцеля и Касси-Бакстера и продвигать перспективу линии соприкосновения, капли воды были помещены на гладкой гидрофобной место в грубом гидрофобной области, грубое гидрофобный место в гладкой гидрофобной области, и гидрофильное место в гидрофобной области. Эксперименты показали, что химический состав поверхностных и геометрия на линии соприкосновения зависят контактный угол и угол контакта гистерезис, но площадь поверхности внутри линии соприкосновения не имели никакого эффекта. Аргумент, что увеличение зубчатости в линии соприкосновения повышает мобильность капельки также была предложена.

Гидрофильные и гидрофобные вещества... и получил лучший ответ

Ответ от Михаил[гуру]
По отношению к воде все практически вещества можно разделить на две группы:
1. Гидрофильные (от греч. "филео" - любить, имеющие положительное сродство к воде) . Эти вещества имеют полярную молекулу, включающую электроотрицательные атомы (кислород, азот, фосфор и др.) . В результате отдельные атомы таких молекул также обретают частичные заряды и образуют водородные связи с молекулами воды. Примеры: сахара, аминокислоты, органические кислоты.
2. Гидрофобные (от греч. "фобос" - страх, имеющие отрицательное сродство к воде) . Молекулы таких веществ неполярны и не смешиваются с полярным растворителем, каковым является вода, но хорошо растворимы в органических растворителях, например, в эфире, и в жирах. Примером могут служить линейные и циклические углеводороды. в т. ч. бензол а также оксиды, гидроксиды, силикаты, сульфаты, фосфаты, глины и т. д. , вещества с полярными группами -ОН, -СООН, -NO2 и др.
Органические гидрофильные вещества:
Этилмеркурфосфат (C2H5Hg)3P04 - белое кристаллическое вещество, т. пл. 178 °С. Хорошо растворяется в воде и гидрофильных органических растворителях, хуже - в углеводородах и других гидрофобных растворителях. С водой дает кристаллогидраты, которые при нагревании легко теряют воду. Безводный препарат при хранении во влажной атмосфере образует кристаллогидрат с одной молекулой воды (т. пл. 110 °С) .
Феиилмеркуртриэтаноламмонийлактат (8) - белое кристаллическое вещество, т. пл. 126 °С. Хорошо растворим в воде и гидрофильных органических растворителях. ЛД50 30 мг/кг.
Гидрофобностью (плохой смачиваемостью) обладают большинство органических веществ с углеводородными радикалами, металлы, полупроводники и т. д. Гидрофобные вещества служат для защиты изделий от разрушающего действия воды.

Ответ от 2 ответа [гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: Гидрофильные и гидрофобные вещества...

Помогите с биологией! Какие вещества называются гидрофильными, гидрофобными? Приведите примеры. (3-4 предложения.)
Вода является превосходным растворителем для полярных веществ, например солей, сахаров, спиртов,

Термин гидрофильность (производное от древнегреческих слов «вода» и «любовь») является характеристикой интенсивности взаимодействия вещества с водой на молекулярном уровне, то есть способность материала усиленно впитывать влагу, а также высокой смачиваемости воды поверхностью вещества. Это понятие можно отнести и к твёрдым телам, как свойство поверхности, и к отдельным ионам, атомам, молекулам и их группам.

Гидрофильность характеризует величина связи адсорбционной молекул воды с молекулами вещества, при этом образуются соединения, в которых количество воды распределяется по значениям энергии связи.

Гидрофильность присуща веществам, имеющим ионные кристаллические решётки (гидроксиды, оксиды, сульфаты, силикаты, глины, фосфаты, стёкла и пр.), имеющим полярные группы -ОН, -NO 2 , -СООН, и др. Гидрофильность и гидрофобность - частные случаи взаимодействия веществ с растворителями (лиофильность, лиофобность).

Гидрофобность можно рассматривать в качестве малой степени гидрофильности, потому что действие межмолекулярных сил притяжения всегда будет более или менее присутствовать между молекулами любого тела и воды. Гидрофильность и гидрофобность можно различить по тому, как растекается капля воды на теле с гладкой поверхностью. Капля растечется полностью на поверхности гидрофильной, и частично - на гидрофобной, при этом на значение угла, образующегося между поверхностью смачиваемого материала и капли, влияет степень гидрофобности данного тела. Гидрофильными являются вещества, в которых сила молекулярных (ионных, атомных) взаимодействий довольно большая. Гидрофобными являются металлы, которые лишены оксидных плёнок, соединения органические, имеющие углеводородные группы в молекуле (воски, жиры, парафины, часть пластмасс), графит, сера и прочие вещества, обладающие слабым взаимодействием на межмолекулярном уровне.

Понятия гидрофильность и гидрофобность применяются как по отношению к телам и их поверхностям, так и относительно единичных молекул или отдельных частей молекул. Например, в молекулах поверхностных активных веществ находятся полярные (гидрофильные) и углеводородные (гидрофобные) соединения. Гидрофильность поверхностной части тела способна резко поменяться вследствие адсорбции подобных веществ.

Гидрофилизацией называют процесс повышения гидрофильности, а гидрофобизацией – процесс ее понижения. Эти явления имеют большую значимость в косметической промышленности, в текстильной технологии для гидрофилизации тканей (волокон) для улучшения качества стирки, беления, крашения и т.д.

Гидрофильность в косметике

Парфюмерно-косметической промышленностью производятся гидрофильные кремы и гели , которые защищают кожу от загрязнений, не растворяемых водой. В составе таких продуктов находятся гидрофильные составляющие, образующие пленку, предотвращающую проникновение водонерастворимых загрязняющих веществ в поверхностный слой кожного покрова.

Гидрофильные кремы производятся из эмульсии, которая стабилизирована подходящими эмульгаторами или с основой вода-масло-вода, масло-вода. Кроме того, к ним можно отнести дисперсные коллоидные системы, в которых стабилизированы гидрофильные поверхностно-активные компоненты, и состоящие из водно-диспергированных или водно-гликолевых смешанных растворителей жирных высших кислот или спиртов.

Гидрогели (гидрофильные гели) готовятся из основ, состоящих из воды, смешанного неводного или гидрофильного растворителя (этиловый спирт, пропиленгликоль, глицерин) и гидрофильного образователя гелей (производные целлюлозы, карбомеры).

Гидрофильные свойства кремов и гелей:

· быстро и хорошо впитываются;

· питают кожу;

· после их применения не остается ощущение жирности;

· очищают кожу;

· укрепляюще воздействуют на кожу;

· снижают действие отрицательных факторов внешней среды;

· помогают коже поддерживать естественную способность к регенерации.

Гидрофильные кремы и гели предназначены, чтобы защитить кожу при работе с несмешивающимися с водой маслами, мазутом, нефтью, красками, смолами, графитом, сажей, органическими растворителями, охлаждающе-смазочными растворами, строительной пеной и многочисленными иными слабоагрессивными веществами. Также они незаменимы при починке автомобиля, ремонте квартиры, при строительстве, на даче при работе с удобрениями и землей.

Компанией «КоролёвФарм» осуществляется производство различных типов парфюмерно-косметической продукции , в том числе гидрофильных и гидрофобных кремов. Предприятие является контрактным производителем и осуществляет все стадии производства: разработку рецептур, сертификацию, постановку на производство, серийный выпуск продукции. Производственная площадка оснащена современным оборудованием.

Предприятие сертифицировано на соответствие требованиям

ГИДРОФИЛЬНОСТЬ И ГИДРОФОБНОСТЬ (от греч. hydor — вода и philia — любовь или phobos — боязнь, страх * а. wetting ability hydrophoby; н. Hydrophilie und Hydrophobie; ф. hydrophilite et hydrophobie; и. hidrofilia е hidrofobia) — понятия, характеризующие сродство веществ или образованных ими тел к ; это сродство обусловлено силами межмолекулярного взаимодействия. Понятия гидрофильность и гидрофобность могут относиться в равной степени к веществу, к поверхности тела и к тонкому слою (в пределе — толщиной в одну молекулу) на границе раздела фаз (тел). Гидрофильность и гидрофобность — частный случай лиофильности и лиофобности — характеристик молекулярного взаимодействия веществ с различными жидкостями.

Общей мерой гидрофильности служит энергия связи молекул воды с поверхностью тела; её можно определить по теплоте смачивания, если вещество данного тела нерастворимо. Гидрофобность рассматривают как малую степень гидрофильности, т.к. между молекулами воды и любого тела всегда действуют в большей или меньшей степени межмолекулярные силы притяжения. Гидрофильность и гидрофобность можно оценить по растеканию капли воды на гладкой поверхности тела (рис.); характеризуются краевым углом смачивания; на гидрофильной поверхности капля растекается полностью, на гидрофобной — частично, причём величина угла между поверхностями капли и смачиваемого тела зависит от того, насколько данное тело гидрофобно.

Гидрофильны все тела, в которых интенсивность молекулярных (атомных, ионных) взаимодействий достаточно велика. Особенно резко выражена гидрофильность с ионными кристаллическими решётками (например, и др.), а также силикатных стёкол. Гидрофобны металлы, лишённые оксидных плёнок, органические соединения с преобладанием углеводородных групп в молекуле (например, парафины, жиры, воски, некоторые пластмассы), и другие вещества со слабым межмолекулярным взаимодействием.

Понятия гидрофильность и гидрофобность применимы не только к телам или их поверхностям, но и к единичным молекулам или отдельным частям молекул. Так, в молекулах поверхностно-активных веществ различают гидрофильные (полярные) и гидрофобные (углеводородные) группы. Гидрофильность поверхности тела может резко изменяться в результате адсорбции таких веществ. Повышение гидрофильности называется гидрофилизацией, а понижение — гидрофобизацией. Оба явления играют важную роль при методом . Гидрофилизация приводит к селективной минералов пустой породы. Для этих целей применяют органические (крахмал, декстрин и др.) и неорганические (жидкое стекло, цианид натрия и т.д.) реагенты. Гидрофобизация вызывается добавлением специальных реагентов-собирателей. См. также .

Кое-кому в школе повезло на уроках химии не только писать скучные контрольные и вычислять молярную массу или указывать валентность, но и смотреть на то, как учитель проводит опыты. Неизменно в рамках эксперимента как по волшебству жидкости в пробирках непредсказуемо меняли цвет, а еще что-нибудь могло взорваться или красиво сгореть. Пожалуй, не так эффектны, но все равно интересны опыты, в которых используются гидрофильные и гидрофобные вещества. Кстати, что это и чем они любопытны?

Физические свойства

На уроках химии, проходя очередной элемент из периодической таблицы, а также все основные вещества, обязательно шла речь об их различных характеристиках. В том числе затрагивались их физические свойства: плотность, в нормальных условиях, температура плавления и кипения, твердость, цвет, электропроводность, теплопроводность и многие другие. Иногда шла речь о таких характеристиках, как гидрофобность или гидрофильность, однако отдельно, как правило, об этом не говорят. Между тем это достаточно интересная группа веществ, с которой легко можно столкнуться в повседневной жизни. Так что нелишним будет узнать о них больше.

Гидрофобные вещества

Примеры легко можно взять из жизни. Так, нельзя смешать воду с маслом - это известно всем. Оно просто не растворяется, а остается плавать пузырьками или пленкой на поверхности, поскольку его плотность меньше. Но почему так и какие существуют еще гидрофобные вещества?

Обычно к этой группе относят жиры, некоторые белки и а также силиконы. Название веществ происходит от греческих слов hydor - вода и phobos - страх, но это не значит, что молекулы боятся. Просто они являются мало или совсем нерастворимыми, их еще называют неполярными. Абсолютной гидрофобности не бывает, даже те вещества, которые, казалось бы, совсем не взаимодействуют с водой, все-таки адсорбируют ее, хоть и в ничтожных количествах. На практике же контакт такого материала с H 2 O выглядит в виде пленки или капелек, либо жидкость остается на поверхности и принимает форму шара, поскольку он имеет наименьшую площадь поверхности и обеспечивают минимальный контакт.

Гидрофобные свойства объясняются тех или иных веществ. Это связано с низким показателем притяжения к как это происходит, например, с углеводородами.

Гидрофильные вещества

Название этой группы, как уже несложно догадаться, тоже происходит от греческих слов. Но в данном случае вторая часть philia - любовь, и это прекрасно характеризует отношения таких веществ с водой - полное "взаимопонимание" и прекрасная растворимость. В эту группу, иногда называемую "полярной", относятся простые спирты, сахара, аминокислоты и т. д. Соответственно, они обладают такими характеристиками, поскольку имеют высокую энергию притяжения к молекуле воды. Строго говоря, вообще-то все вещества являются гидрофильными в большей или меньшей степени.

Амфифильность

А бывает ли так, что гидрофобные вещества могут одновременно иметь и гидрофильные свойства? Оказывается, да! Эту группу веществ называют дифильными, или амфифильными. Оказывается, одна и та же молекула может иметь в своей структуре как растворимые - полярные, так и водоотталкивающие - неполярные элементы. Такими свойствами, например, обладают некоторые белки, липиды, поверхностно-активные вещества, полимеры и пептиды. При взаимодействии с водой они образуют различные надмолекулярные структуры: монослои, липосомы, мицеллы, бислойные мембраны, везикулы и т. д. Полярные группы при этом оказываются ориентированными к жидкости.

Значение и применение в жизни

Помимо взаимодействия воды и масла, можно найти немало подтверждений тому, что гидрофобные вещества встречаются едва ли не повсеместно. Так, чистые поверхности металлов, полупроводников, а также кожа животных, листья растений, хитиновый покров насекомых обладают подобными свойствами.

В природе оба вида веществ имеют важное значение. Так, гидрофилы используются в транспорте в организмах животных и растений, конечные продукты обмена также выводятся при помощи растворов биологических жидкостей. Неполярные вещества же имеют серьезное значение в формировании клеточных мембран, имеющих Именно поэтому подобные свойства играют важную роль в протекании биологических процессов.

В последние годы ученые разрабатывают все новые гидрофобные вещества, при помощи которых можно защитить различные материалы от смачивания и загрязнения, создавая таким образом даже самоочищающиеся поверхности. Одежда, металлические изделия, стройматериалы, автомобильные стекла - сфер применения множество. Дальнейшее изучение этой темы приведет к разработке мультифобных веществ, которые станут основной для грязеотталкивающих поверхностей. Создав подобные материалы, люди смогут сэкономить время, средства и ресурсы, а также появится возможность снизить степень чистящими средствами. Так что дальнейшие разработки пойдут на пользу всем.